Support Vectors LINEAR CLASSIFIERS IN PYTHON

Michael (Mike) Gelbart Instructor, The University of British Columbia

What is an SVM?

- Linear classifiers (so far) \bullet
- Trained using the hinge loss and L2 regularization

- Support vector: a training example **not** in the flat part of the loss diagram
- Support vector: an example that is incorrectly classified **or** close to the boundary
- If an example is not a support vector, removing it has no effect on the model
- Having a small number of support vectors makes kernel SVMs really fast

Max-margin viewpoint

- The SVM maximizes the "margin" for linearly separable datasets
- Margin: distance from the boundary to the closest points \bullet

Max-margin viewpoint

- The SVM maximizes the "margin" for linearly separable datasets
- Margin: distance from the boundary to the closest points \bullet

Let's practice!

LINEAR CLASSIFIERS IN PYTHON

Michael (Mike) Gelbart Instructor, The University of British Columbia

transformed feature =

 $(original feature)^2$

transformed feature =

 $(original feature)^2$

transformed feature =

 $(original feature)^2$

from sklearn.svm import SVC

svm = SVC(gamma=1) # default is kernel="rbf"

from sklearn.svm import SVC

svm = SVC(gamma=0.01) # default is kernel="rbf"

• smaller gamma leads to smoother boundaries

from sklearn.svm import SVC

svm = SVC(gamma=2) # default is kernel="rbf"

• larger gamma leads to more complex boundaries

Let's practice!

Comparing logistic regression and SVM

LINEAR CLASSIFIERS IN PYTHON

Michael (Mike) Gelbart Instructor, The University of British Columbia

Logistic regression:

- ls a linear classifier
- Can use with kernels, but slow
- Outputs meaningful probabilities
- Can be extended to multi-class
- All data points affect fit
- L2 or L1 regularization

Support vector machine (SVM):

- Is a linear classifier
- Can use with kernels, and fast
- Does not naturally output probabilities
- Can be extended to multiclass
- Only "support vectors" affect fit
- Conventionally just L2 reaularization

Use in scikit-learn

Logistic regression in sklearn:

linear_model.LogisticRegression \bullet

Key hyperparameters in sklearn:

- **C** (inverse regularization strength)
- penalty (type of regularization)
- multi_class (type of multi-class) \bullet

SVM in sklearn:

svm.LinearSVC and svm.SVC

Use in scikit-learn (cont.)

Key hyperparameters in sklearn:

- **C** (inverse regularization strength)
- kernel (type of kernel)
- gamma (inverse RBF smoothness)

SGDClassifier

SGDClassifier : scales well to large datasets

from sklearn.linear_model import SGDClassifier

logreg = SGDClassifier(loss='log_loss')

linsvm = SGDClassifier(loss='hinge')

SGDClassifier hyperparameter alpha is like 1/C

Let's practice!

Conclusion

LINEAR CLASSIFIERS IN PYTHON

Michael (Mike) Gelbart Instructor, The University of British Columbia

How does this course fit into data science?

- Data science
- \rightarrow Machine learning
- \rightarrow Supervised learning
- $\rightarrow \rightarrow \rightarrow \rightarrow$ Classification
- $\rightarrow \rightarrow \rightarrow \rightarrow$ Linear classifiers (this course)

Congratulations & thanks!

