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How does regularization affect training accuracy?
lr_weak_reg = LogisticRegression(C=100) 
lr_strong_reg = LogisticRegression(C=0.01)  
 
lr_weak_reg.fit(X_train, y_train) 
lr_strong_reg.fit(X_train, y_train)  
 
lr_weak_reg.score(X_train, y_train) 
lr_strong_reg.score(X_train, y_train) 

1.0 
0.92 

regularized loss = original loss + large coefficient penalty

more regularization: lower training accuracy
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How does regularization affect test accuracy?
lr_weak_reg.score(X_test, y_test) 

0.86 

lr_strong_reg.score(X_test, y_test) 

0.88 

regularized loss = original loss + large coefficient penalty

more regularization: lower training accuracy

more regularization: (almost always) higher test accuracy
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L1 vs. L2 regularization
Lasso = linear regression with L1 regularization

Ridge = linear regression with L2 regularization

For other models like logistic regression we just say L1, L2, etc.

lr_L1 = LogisticRegression(solver='liblinear', penalty='l1') 
lr_L2 = LogisticRegression() # penalty='l2' by default 
 
lr_L1.fit(X_train, y_train) 
lr_L2.fit(X_train, y_train) 

plt.plot(lr_L1.coef_.flatten()) 
plt.plot(lr_L2.coef_.flatten()) 
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L2 vs. L1 regularization
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Logistic regression probabilities
Without regularization 
(C = 10 ):

model coefficients:
[[1.55 1.57]]

model intercept: [-0.64]
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Logistic regression probabilities
Without regularization 
(C = 10 ):

model coefficients:
[[1.55 1.57]]

model intercept: [-0.64]

With regularization (C = 1):

model coefficients:
[[0.45 0.64]]

model intercept: [-0.26]
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How are these probabilities computed?
logistic regression predictions: sign of raw model output

logistic regression probabilities: "squashed" raw model output
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Combining binary classifiers with one-vs-rest
lr0.fit(X, y==0) 
 
lr1.fit(X, y==1) 
 
lr2.fit(X, y==2) 

# get raw model output 
lr0.decision_function(X)[0] 

6.124 

lr1.decision_function(X)[0] 

-5.429 

lr2.decision_function(X)[0] 

-7.532 

lr = LogisticRegression(multi_class='ovr') 
lr.fit(X, y)  
lr.predict(X)[0] 

0 
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One-vs-rest:

fit a binary classifier for
each class

predict with all, take largest
output

pro: simple, modular

con: not directly optimizing
accuracy

common for SVMs as well

can produce probabilities

"Multinomial" or "softmax":

fit a single classifier for all
classes

prediction directly outputs
best class

con: more complicated, new
code

pro: tackle the problem
directly

possible for SVMs, but less
common

can produce probabilities
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Model coefficients for multi-class
lr_ovr = LogisticRegression(multi_class='ovr')  

lr_ovr.fit(X,y) 

lr_ovr.coef_.shape 

(3,13) 

lr_ovr.intercept_.shape 

(3,) 

lr_mn = LogisticRegression(multi_class="multinomial") 
lr_mn.fit(X,y) 
 
lr_mn.coef_.shape 

(3,13) 

lr_mn.intercept_.shape 

(3,) 
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