
Logistic regression
and regularization

L INEAR CLASS IF IERS IN PYTHON

Michael (Mike) Gelbart
Instructor, The University of British
Columbia

LINEAR CLASSIFIERS IN PYTHON

Regularized logistic regression

LINEAR CLASSIFIERS IN PYTHON

Regularized logistic regression

LINEAR CLASSIFIERS IN PYTHON

How does regularization affect training accuracy?
lr_weak_reg = LogisticRegression(C=100)
lr_strong_reg = LogisticRegression(C=0.01)

lr_weak_reg.fit(X_train, y_train)
lr_strong_reg.fit(X_train, y_train)

lr_weak_reg.score(X_train, y_train)
lr_strong_reg.score(X_train, y_train)

1.0
0.92

regularized loss = original loss + large coefficient penalty

more regularization: lower training accuracy

LINEAR CLASSIFIERS IN PYTHON

How does regularization affect test accuracy?
lr_weak_reg.score(X_test, y_test)

0.86

lr_strong_reg.score(X_test, y_test)

0.88

regularized loss = original loss + large coefficient penalty

more regularization: lower training accuracy

more regularization: (almost always) higher test accuracy

LINEAR CLASSIFIERS IN PYTHON

L1 vs. L2 regularization
Lasso = linear regression with L1 regularization

Ridge = linear regression with L2 regularization

For other models like logistic regression we just say L1, L2, etc.

lr_L1 = LogisticRegression(solver='liblinear', penalty='l1')
lr_L2 = LogisticRegression() # penalty='l2' by default

lr_L1.fit(X_train, y_train)
lr_L2.fit(X_train, y_train)

plt.plot(lr_L1.coef_.flatten())
plt.plot(lr_L2.coef_.flatten())

LINEAR CLASSIFIERS IN PYTHON

L2 vs. L1 regularization

Let's practice!
L INEAR CLASS IF IERS IN PYTHON

Logistic regression
and probabilities

L INEAR CLASS IF IERS IN PYTHON

Michael (Mike) Gelbart
Instructor, The University of British
Columbia

LINEAR CLASSIFIERS IN PYTHON

Logistic regression probabilities
Without regularization
(C = 10):

model coefficients:
[[1.55 1.57]]

model intercept: [-0.64]

8

LINEAR CLASSIFIERS IN PYTHON

Logistic regression probabilities
Without regularization
(C = 10):

model coefficients:
[[1.55 1.57]]

model intercept: [-0.64]

8

LINEAR CLASSIFIERS IN PYTHON

Logistic regression probabilities
Without regularization
(C = 10):

model coefficients:
[[1.55 1.57]]

model intercept: [-0.64]

With regularization (C = 1):

model coefficients:
[[0.45 0.64]]

model intercept: [-0.26]

8

LINEAR CLASSIFIERS IN PYTHON

How are these probabilities computed?
logistic regression predictions: sign of raw model output

logistic regression probabilities: "squashed" raw model output

Let's practice!
L INEAR CLASS IF IERS IN PYTHON

Multi-class logistic
regression

L INEAR CLASS IF IERS IN PYTHON

Michael (Mike) Gelbart
Instructor, The University of British
Columbia

LINEAR CLASSIFIERS IN PYTHON

Combining binary classifiers with one-vs-rest
lr0.fit(X, y==0)

lr1.fit(X, y==1)

lr2.fit(X, y==2)

get raw model output
lr0.decision_function(X)[0]

6.124

lr1.decision_function(X)[0]

-5.429

lr2.decision_function(X)[0]

-7.532

lr = LogisticRegression(multi_class='ovr')
lr.fit(X, y)
lr.predict(X)[0]

0

LINEAR CLASSIFIERS IN PYTHON

One-vs-rest:

fit a binary classifier for
each class

predict with all, take largest
output

pro: simple, modular

con: not directly optimizing
accuracy

common for SVMs as well

can produce probabilities

"Multinomial" or "softmax":

fit a single classifier for all
classes

prediction directly outputs
best class

con: more complicated, new
code

pro: tackle the problem
directly

possible for SVMs, but less
common

can produce probabilities

LINEAR CLASSIFIERS IN PYTHON

Model coefficients for multi-class
lr_ovr = LogisticRegression(multi_class='ovr')

lr_ovr.fit(X,y)

lr_ovr.coef_.shape

(3,13)

lr_ovr.intercept_.shape

(3,)

lr_mn = LogisticRegression(multi_class="multinomial")
lr_mn.fit(X,y)

lr_mn.coef_.shape

(3,13)

lr_mn.intercept_.shape

(3,)

Let's practice!
L INEAR CLASS IF IERS IN PYTHON

