# **Baseline model**

#### WINNING A KAGGLE COMPETITION IN PYTHON



Yauhen Babakhin Kaggle Grandmaster





### Modeling stage







Modeling stage





### New York city taxi validation

```
# Read data
taxi_train = pd.read_csv('taxi_train.csv')
taxi_test = pd.read_csv('taxi_test.csv')
```

from sklearn.model\_selection import train\_test\_split

```
# Create local validation
validation_train, validation_test = train_test_split(taxi_train,
                                                      test_size=0.3,
```



#### WINNING A KAGGLE COMPETITION IN PYTHON

random\_state=123)

### **Baseline model I**

```
import numpy as np
# Assign the mean fare amount to all the test observations
taxi_test['fare_amount'] = np.mean(taxi_train.fare_amount)
# Write predictions to the file
taxi_test[['id','fare_amount']].to_csv('mean_sub.csv', index=False)
```

| Validation RMSE | Public LB RMSE | Public LB Position |
|-----------------|----------------|--------------------|
| 9.986           | 9.409          | 1449 / 1500        |



### **Baseline model II**

# Calculate the mean fare amount by group naive\_prediction\_groups = taxi\_train.groupby('passenger\_count').fare\_amount.mean()

# Make predictions on the test set taxi\_test['fare\_amount'] = taxi\_test.passenger\_count.map(naive\_prediction\_groups) # Write predictions to the file taxi\_test[['id','fare\_amount']].to\_csv('mean\_group\_sub.csv', index=False)

| Validation RMSE | Public LB RMSE | <b>Public LB Position</b> |
|-----------------|----------------|---------------------------|
| 9.978           | 9.407          | 1411 / 1500               |



### **Baseline model III**

# Select only numeric features features = ['pickup\_longitude', 'pickup\_latitude', 'dropoff\_longitude', 'dropoff\_latitude', 'passenger\_count']

**from** sklearn.ensemble **import** GradientBoostingRegressor

- # Train a Gradient Boosting model
- gb = GradientBoostingRegressor()
- gb.fit(taxi\_train[features], taxi\_train.fare\_amount)
- # Make predictions on the test data

```
taxi_test['fare_amount'] = gb.predict(taxi_test[features])
```



### **Baseline model III**

# Write predictions to the file taxi\_test[['id','fare\_amount']].to\_csv('gb\_sub.csv', index=False)

| Validation RMSE | Public LB RMSE | Public LB Position |
|-----------------|----------------|--------------------|
| 5.996           | 4.595          | 1109 / 1500        |



### **Intermediate results**

| Model             | Validation RMSE | Public LB RMSE |
|-------------------|-----------------|----------------|
| Simple Mean       | 9.986           | 9.409          |
| Group Mean        | 9.978           | 9.407          |
| Gradient Boosting | 5.996           | 4.595          |



### **Correlation with Public Leaderboard**

| Model      | Validation<br>RMSE | Public LB RMSE | Model      | Validation<br>RMSE | Public LB RMSE |
|------------|--------------------|----------------|------------|--------------------|----------------|
| Model A    | 3.500              | 3.800          | Model A    | 3.400              | 3.900          |
| Model B    | 3.300              | 4.100          | Model B    | 3.100              | 3.400          |
| Model<br>C | 3.200              | 3.900          | Model<br>C | 2.900              | 3.300          |



# Let's practice!





# Hyperparameter tuning

WINNING A KAGGLE COMPETITION IN PYTHON



Yauhen Babakhin Kaggle Grandmaster

R datacamp

### Iterations

| Model                | Validation RMSE | Public LB RMSE | Public LB F |
|----------------------|-----------------|----------------|-------------|
| Simple mean          | 9.986           | 9.409          | 1449 / 1    |
| Group mean           | 9.978           | 9.407          | 1411 / 15   |
| Gradient Boosting    | 5.996           | 4.595          | 1109 / 1    |
| Add hour feature     | 5.553           | 4.352          | 1068 / 1    |
| Add distance feature | 5.268           | 4.103          | 1006 / 1    |
| •••                  | •••             | •••            | •••         |





### Iterations

| Model                | Validation RMSE | Public LB RMSE | Public LB F |
|----------------------|-----------------|----------------|-------------|
| Simple mean          | 9.986           | 9.409          | 1449 / 1    |
| Group mean           | 9.978           |                |             |
| Gradient Boosting    | 5.996           | 4.595          | 1109 / 1    |
| Add hour feature     | 5.553           |                |             |
| Add distance feature | 5.268           | 4.103          | 1006 / 1    |
| •••                  | •••             | •••            | •••         |





## Hyperparameter optimization

| <b>Competition type</b>  | Feature engineering | Hyperparameter op |
|--------------------------|---------------------|-------------------|
| Classic Machine Learning | +++                 | +                 |
| Deep Learning            | _                   | +++               |



# timization

### **Ridge regression**

Least squares linear regression

$$Loss = \sum_{i=1}^N {(y_i - {\hat y}_i)^2} o \min$$



### **Ridge regression**

### Least squares linear regression

$$Loss = \sum_{i=1}^N {(y_i - \hat{y}_i)^2} o \min$$

**Ridge regression** 

$$Loss = \sum_{i=1}^N {(y_i - \hat{y}_i)^2} + lpha \sum_{j=1}^K {w_j}^2 o \min$$

acamp

## Hyperparameter optimization strategies

- Grid search. Choose the predefined grid of hyperparameter values
- **Random search.** Choose the search space of hyperparameter values
- **Bayesian optimization.** Choose the search space of hyperparameter values





### Grid search

```
# Possible alpha values
alpha_{grid} = [0.01, 0.1, 1, 10]
from sklearn.linear_model import Ridge
results = {}
# For each value in the grid
for candidate_alpha in alpha_grid:
    # Create a model with a specific alpha value
    ridge_regression = Ridge(alpha=candidate_alpha)
    # Find the validation score for this model
    # Save the results for each alpha value
    results[candidate_alpha] = validation_score
```



# Let's practice!





# Model ensembling

#### WINNING A KAGGLE COMPETITION IN PYTHON



Yauhen Babakhin Kaggle Grandmaster

datacamp



### Model ensembling



### datacamp



Final 0.97024

Weighted Rank Average

### Model blending

- Regression problem
- Train two different models: A and B  $\bullet$
- Make predictions on the test data:  $\bullet$

| Test ID | Model A prediction | Model B prediction |
|---------|--------------------|--------------------|
| 1       | 1.2                | 1.5                |
| 2       | 0.1                | 0.4                |
| 3       | 5.4                | 7.2                |



### Model blending

| Test ID | Model A prediction | Model B prediction | Arithmetic mean |
|---------|--------------------|--------------------|-----------------|
| 1       | 1.2                | 1.5                | 1.35            |
| 2       | 0.1                | 0.4                | 0.25            |
| 3       | 5.4                | 7.2                | 6.30            |



Model blending

### **Arithmetic mean**

$$arithmetic = rac{1}{n}\sum_{i=1}^n x_i$$

### **Geometric mean**

$$geometric = \left(\prod_{i=1}^n x_i\right)^{rac{1}{n}}$$



### Model stacking

- 1. Split train data into two parts
- 2. Train multiple models on Part 1
- 3. Make predictions on Part 2
- 4. Make predictions on the test data
- 5. Train a new model on Part 2 using predictions as features
- Make predictions on the test data using the 2nd level model 6.



| Train ID | feature_1 | ••• | feature_N | Target |
|----------|-----------|-----|-----------|--------|
| 1        | 0.55      | ••• | 1.37      | 1      |
| 2        | 0.12      | ••• | -2.50     | 0      |
| 3        | 0.65      | ••• | 3.14      | 0      |
| 4        | 0.10      | ••• | 2.87      | 1      |
| 5        | 0.54      | ••• | -0.10     | 0      |

| Test IDs | feature_1 | ••• | feature_N | Target |
|----------|-----------|-----|-----------|--------|
| 11       | 0.49      | ••• | -2.32     | ?      |
| 12       | 0.32      | ••• | 1.15      | ?      |
| 13       | 0.91      | ••• | 0.81      | ?      |



| Train ID | feature_1 | ••• | feature_N | Target |
|----------|-----------|-----|-----------|--------|
| 1        | 0.55      | ••• | 1.37      | 1      |
| 2        | 0.12      | ••• | -2.50     | 0      |
| 3        | 0.65      | ••• | 3.14      | 0      |

| Train ID | feature_1 | ••• | feature_N | Target |
|----------|-----------|-----|-----------|--------|
| 4        | 0.10      | ••• | 2.87      | 1      |
| 5        | 0.54      | ••• | -0.10     | 0      |



| Train ID | feature_1 | ••• | feature_N | Target |
|----------|-----------|-----|-----------|--------|
| 1        | 0.55      | ••• | 1.37      | 1      |
| 2        | 0.12      | ••• | -2.50     | 0      |
| 3        | 0.65      | ••• | 3.14      | 0      |

### Train models A, B, C on Part 1

| Train ID | feature_1 | ••• | feature_N | Target |
|----------|-----------|-----|-----------|--------|
| 4        | 0.10      | ••• | 2.87      | 1      |
| 5        | 0.54      | ••• | -0.10     | 0      |



| Train ID | feature_1 | ••• | feature_N | Target | A_pred | B_pred | C_pred |
|----------|-----------|-----|-----------|--------|--------|--------|--------|
| 4        | 0.10      | ••• | 2.87      | 1      | 0.71   | 0.52   | 0.98   |
| 5        | 0.54      | ••• | -0.10     | 0      | 0.45   | 0.32   | 0.24   |

| Test IDs | feature_1 | ••• | feature_N | Target | A_pred | <b>B_pred</b> | C_pre |
|----------|-----------|-----|-----------|--------|--------|---------------|-------|
| 11       | 0.49      | ••• | -2.32     | ?      | 0.62   | 0.45          | 0.81  |
| 12       | 0.32      | ••• | 1.15      | ?      | 0.31   | 0.52          | 0.41  |
| 13       | 0.91      | ••• | 0.81      | ?      | 0.74   | 0.55          | 0.92  |



| Train ID | Target | A_pred | <b>B_pred</b> | C_pred |
|----------|--------|--------|---------------|--------|
| 4        | 1      | 0.71   | 0.52          | 0.98   |
| 5        | 0      | 0.45   | 0.32          | 0.24   |

| Test IDs | Target | A_pred | <b>B_pred</b> | C_pred |
|----------|--------|--------|---------------|--------|
| 11       | ?      | 0.62   | 0.45          | 0.81   |
| 12       | ?      | 0.31   | 0.52          | 0.41   |
| 13       | ?      | 0.74   | 0.55          | 0.92   |



| Train ID | Target | A_pred | <b>B_pred</b> | C_pred |
|----------|--------|--------|---------------|--------|
| 4        | 1      | 0.71   | 0.52          | 0.98   |
| 5        | 0      | 0.45   | 0.32          | 0.24   |

Train 2nd level model on Part 2

| Test IDs | Target | A_pred | <b>B_pred</b> | C_pred |
|----------|--------|--------|---------------|--------|
| 11       | ?      | 0.62   | 0.45          | 0.81   |
| 12       | ?      | 0.31   | 0.52          | 0.41   |
| 13       | ?      | 0.74   | 0.55          | 0.92   |



| Train ID | Target | A_pred | <b>B_pred</b> | C_pred |
|----------|--------|--------|---------------|--------|
| 4        | 1      | 0.71   | 0.52          | 0.98   |
| 5        | 0      | 0.45   | 0.32          | 0.24   |

| Test IDs | Target | A_pred | <b>B_pred</b> | C_pred | <b>Stacking prediction</b> |
|----------|--------|--------|---------------|--------|----------------------------|
| 11       | ?      | 0.62   | 0.45          | 0.81   | 0.73                       |
| 12       | ?      | 0.31   | 0.52          | 0.41   | 0.35                       |
| 13       | ?      | 0.74   | 0.55          | 0.92   | 0.88                       |

# Let's practice!





### **Final tips** WINNING A KAGGLE COMPETITION IN PYTHON



Yauhen Babakhin Kaggle Grandmaster





### Save information

- 1. Save folds to the disk
- 2. Save model runs
- 3. Save model predictions to the disk
- 4. Save performance results



### Kaggle forum and kernels



### Kaggle forum and kernels

### Kaggle forum

• Competition discussion by the participants



### Kaggle forum and kernels

### Kaggle forum

Competition discussion by the participants 

### Kaggle kernels

- Scripts and notebooks shared by the participants
- Cloud computational environment



### Forum and kernels usage

| When?                  | Forum                                                                  |                                 |
|------------------------|------------------------------------------------------------------------|---------------------------------|
| Before the competition | Read winners' solutions from the past similar competitions             | Go through bas<br>the past sir  |
| During the competition | Follow the discussion to find the ideas and approaches for the problem | Look at EDA,<br>validation stra |
| After the competition  | Read winners' solutions                                                | Look at the                     |



#### Kernels

seline approaches from milar competitions

baseline models and Itegies used by others

final solutions code sharing

### **Select final submissions**





### **Select final submissions**





### **Select final submissions**







### **Final submissions**

- 1. Best submission on the local validation
- 2. Best submission on the Public Leaderboard



# Let's practice!





### **Final thoughts** WINNING A KAGGLE COMPETITION IN PYTHON



Yauhen Babakhin Kaggle Granmaster





### What we've learned

- What is Kaggle
- Understand the problem  $\bullet$
- Make EDA
- Develop local validation lacksquare
- Generate new features
- Build model ensembles



### Kaggle vs Data Science



### Kaggle vs Data Science

### Data analytics

• Kaggle does not help here



## Kaggle vs Data Science

### **Data analytics**

• Kaggle does not help here

### Machine learning models

- 1. Talk to Business. Define the problem
- 2. Collect the data
- 3. Select the metric
- 4. Make train and test split
- 5. Create the model
- 6. Move model to the production







### Start competing on Kaggle! WINNING A KAGGLE COMPETITION IN PYTHON

