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Visualizations communicate insight
e "t-SNE" : Creates a 2D map of a dataset (later)

e "Hierarchical clustering” (this video)
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A hierarchy of groups

e Groups of living things can form a hierarchy

e Clusters are contained in one another
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Eurovision scoring dataset

e Countries gave scores to songs performed at the Eurovision
2016

e 2D array of scores

e Rows are countries, columns are songs
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! https://www.eurovision.tv/page/results
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Countries hierarchically clustered by Eurovision 2016 voting
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Hierarchical clustering

e Every country begins in a separate cluster
e At each step, the two closest clusters are merged
e Continue until all countries in a single cluster

e This is "agglomerative" hierarchical clustering
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The dendrogram of a hierarchical clustering

e Read from the bottom up

e Vertical lines represent clusters

Countries hierarchically clustered by Eurovision 2016 voting
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The dendrogram of a hierarchical clustering

e Read from the bottom up

e Vertical lines represent clusters

Countries hierarchically clustered by Eurovision 2016 voting
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Dendrograms, step-by-step
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Countries hierarchically clustered by Eurovision 2016 voting

30 +
25+
20 |
15
10

Dendrograms, step-by-step
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Hierarchical clustering with SciPy

e Given samples (the array of scores), and country_names

import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import linkage, dendrogram
mergings = linkage(samples, method='complete')
dendrogram(mergings,

lLabels=country_names,

leaf_rotation=90,

leaf_font_size=6)
plt.show()
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Let's practice!
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Cluster labels in
hierarchical
clustering
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Cluster labels in hierarchical clustering

e Not only a visualization tool!
e Cluster labels at any intermediate stage can be recovered

e For use in e.g. cross-tabulations

Countries hierarchically clustered by Eurovision 2016 voting
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Intermediate clusterings & height on dendrogram

e E.g.at height 15: 20 |
o Bulgaria, Cyprus, Greece

are one cluster =] il At il T """

o Russia and Moldova are ,

another

o Armenia in a cluster on its
own
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Dendrograms show cluster distances

e Height on dendrogram = 20 ‘

distance between merging

clusters
15

e E.g. clusters with only

Cyprus and Greece had 10

distance approx. 6
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Dendrograms show cluster distances

e Height on dendrogram = 20 ‘

distance between merging

clusters
15

e E.g. clusters with only

Cyprus and Greece had 10

distance approx. 6

e This new cluster distance 5
approx. 12 from cluster with

only Bulgaria 0
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Intermediate clusterings & height on dendrogram

e Height on dendrogram specifies max. distance between
merging clusters

e Don't merge clusters further apart than this (e.g. 15)
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Distance between clusters
e Defined by a "linkage method”

e In "complete” linkage: distance between clusters is max.
distance between their samples

* Specified via method parameter, e.g. linkage(samples,
method="complete")

e Different linkage method, different hierarchical clustering!
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Extracting cluster labels

e Use the fcluster() function

e Returns a NumPy array of cluster labels
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Extracting cluster labels using fcluster

from scipy.cluster.hierarchy import linkage

mergings = linkage(samples, method='complete')

from scipy.cluster.hierarchy import fcluster

labels = fcluster(mergings, 15, criterion='distance"')
print(labels)

[ 9 81120 2 117 14 ... ]
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Aligning cluster labels with country names

Given a list of strings country_names :

import pandas as pd
pairs = pd.DataFrame({'labels': labels, 'countries': country_names})
print(pairs.sort_values('labels'))

countries Tlabels
Belarus 1
Ukraine 1
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Let's practice!
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t-SNE for 2-
dimensional maps
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t-SNE for 2-dimensional maps

t-SNE = "t-distributed stochastic neighbor embedding”
Maps samples to 2D space (or 3D)

Map approximately preserves nearness of samples

Great for inspecting datasets
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t-SNE on the iris dataset

e [ris dataset has 4 measurements, so samples are 4-
dimensional

e t-SNE maps samples to 2D space
e t-SNE didn't know that there were different species

e ...yet kept the species mostly separate
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t-SNE applied to the iris dataset
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Interpreting t-SNE scatter plots

e "versicolor” and "virginica" harder to distinguish from one
another

e Consistent with k-means inertia plot: could argue for 2
clusters, or for 3

o t-SNE applied to the iris dataset
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t-SNE in sklearn

e 2D NumPy array samples

print(samples)

e List species giving species of labels as number (O, 1, or 2)

print(species)
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t-SNE in sklearn

import matplotlib.pyplot as plt

from sklearn.manifold import TSNE

model = TSNE(learning_rate=100)
transformed = model.fit_transform(samples)
Xs = transformed[:,0]

ys = transformed[:,1]

plt.scatter(xs, ys, c=species)

plt.show()
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t-SNE has only fit_transform()

e Has a fit_transform() method

e Simultaneously fits the model and transforms the data
e Has no separate fit() or transform() methods

e Can't extend the map to include new data samples

e Must start over each time!
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t-SNE learning rate

e Choose learning rate for the dataset
 Wrong choice: points bunch together

e Try values between 50 and 200
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Different every time

e t-SNE features are different every time

e Piedmont wines, 3 runs, 3 different scatter plots!

e ... however: The wine varieties (=colors) have same position
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t-SNE applied to scaled Piedmont wines

relative to one another
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Let's practice!
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