Visualizing hierarchies

UNSUPERVISED LEARNING IN PYTHON

Benjamin Wilson Director of Research at lateral.io

Visualizations communicate insight

- "t-SNE" : Creates a 2D map of a dataset (later)
- "Hierarchical clustering" (this video)

A hierarchy of groups

- Groups of living things can form a hierarchy
- Clusters are contained in one another

Eurovision scoring dataset

- Countries gave scores to songs performed at the Eurovision 2016
- 2D array of scores
- Rows are countries, columns are songs \bullet

¹ https://www.eurovision.tv/page/results

Hierarchical clustering of voting countries

datacamp

Hierarchical clustering

- Every country begins in a separate cluster
- At each step, the two closest clusters are merged
- Continue until all countries in a single cluster ${}^{\bullet}$
- This is "agglomerative" hierarchical clustering

The dendrogram of a hierarchical clustering

- Read from the bottom up
- Vertical lines represent clusters \bullet

The dendrogram of a hierarchical clustering

- Read from the bottom up
- Vertical lines represent clusters \bullet

datacamp

datacamp

datacamp

R datacamp

datacamp

datacamp

& datacamp

Hierarchical clustering with SciPy

• Given samples (the array of scores), and country_names

```
import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import linkage, dendrogram
mergings = linkage(samples, method='complete')
dendrogram(mergings,
           labels=country_names,
           leaf_rotation=90,
           leaf_font_size=6)
```

plt.show()

Let's practice!

Cluster labels in hierarchical clustering

UNSUPERVISED LEARNING IN PYTHON

Benjamin Wilson Director of Research at lateral.io

Cluster labels in hierarchical clustering

- Not only a visualization tool!
- Cluster labels at any intermediate stage can be recovered \bullet
- For use in e.g. cross-tabulations

Intermediate clusterings & height on dendrogram

- E.g. at height 15:
 - Bulgaria, Cyprus, Greece 0 are one cluster
 - Russia and Moldova are 0 another
 - Armenia in a cluster on its 0 own

Dendrograms show cluster distances

- Height on dendrogram = \bullet distance between merging clusters
- E.g. clusters with only Cyprus and Greece had distance approx. 6

Dendrograms show cluster distances

- Height on dendrogram = \bullet distance between merging clusters
- E.g. clusters with only Cyprus and Greece had distance approx. 6
- This new cluster distance approx. 12 from cluster with only Bulgaria

Intermediate clusterings & height on dendrogram

- Height on dendrogram specifies max. distance between \bullet merging clusters
- Don't merge clusters further apart than this (e.g. 15)

Distance between clusters

- Defined by a "linkage method" \bullet
- In "complete" linkage: distance between clusters is max. distance between their samples
- Specified via method parameter, e.g. linkage(samples, method="complete")
- Different linkage method, different hierarchical clustering!

Extracting cluster labels

- Use the fcluster() function
- Returns a NumPy array of cluster labels ullet

Extracting cluster labels using fcluster

from scipy.cluster.hierarchy **import** linkage mergings = linkage(samples, method='complete') **from** scipy.cluster.hierarchy **import** fcluster labels = fcluster(mergings, 15, criterion='distance') print(labels)

9 8 11 20 2 1 17 14 ...]

Aligning cluster labels with country names

Given a list of strings country_names :

import pandas as pd pairs = pd.DataFrame({'labels': labels, 'countries': country_names}) print(pairs.sort_values('labels'))

	countries	labels
5	Belarus	1
40	Ukraine	1
36	Spain	5
8	Bulgaria	6
19	Greece	6
10	Cyprus	6
28	Moldova	7
•••		

Let's practice!

t-SNE for 2dimensional maps

UNSUPERVISED LEARNING IN PYTHON

Benjamin Wilson Director of Research at lateral.io

t-SNE for 2-dimensional maps

- t-SNE = "t-distributed stochastic neighbor embedding"
- Maps samples to 2D space (or 3D)
- Map approximately preserves nearness of samples \bullet
- Great for inspecting datasets

t-SNE on the iris dataset

- Iris dataset has 4 measurements, so samples are 4dimensional
- t-SNE maps samples to 2D space
- t-SNE didn't know that there were different species
- ... yet kept the species mostly separate

R datacamp

Interpreting t-SNE scatter plots

- "versicolor" and "virginica" harder to distinguish from one another
- Consistent with k-means inertia plot: could argue for 2 \bullet clusters, or for 3

t-SNE in sklearn

• 2D NumPy array samples

print(samples)

]]	5.	3.3	1.4	0.2]			
[5.	3.5	1.3	0.3]			
[4.9	2.4	3.3	1.]			
[6.3	2.8	5.1	1.5]			
•••							
]	4.9	3.1	1.5	0.1]]			

List species giving species of labels as number (0, 1, or 2) ullet

```
print(species)
[0, 0, 1, 2, \ldots, 0]
```


t-SNE in sklearn

```
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
model = TSNE(learning_rate=100)
transformed = model.fit_transform(samples)
xs = transformed[:,0]
ys = transformed[:,1]
plt.scatter(xs, ys, c=species)
plt.show()
```


R datacamp

t-SNE has only fit_transform()

- Has a fit_transform() method
- Simultaneously fits the model and transforms the data
- Has no separate fit() or transform() methods
- Can't extend the map to include new data samples
- Must start over each time!

t-SNE learning rate

- Choose learning rate for the dataset
- Wrong choice: points bunch together
- Try values between 50 and 200

Different every time

- t-SNE features are different every time
- Piedmont wines, 3 runs, 3 different scatter plots!
- ... however: The wine varieties (=colors) have same position relative to one another

R datacamp

Let's practice!

