Unsupervised Learning

UNSUPERVISED LEARNING IN PYTHON

Benjamin Wilson Director of Research at lateral.io

Unsupervised learning

- Unsupervised learning finds patterns in data
- E.g., *clustering* customers by their purchases
- Compressing the data using purchase patterns (*dimension* ${}^{\bullet}$ reduction)

Supervised vs unsupervised learning

- Supervised learning finds patterns for a prediction task
- E.g., classify tumors as benign or cancerous (*labels*)
- Unsupervised learning finds patterns in data
- ... but *without* a specific prediction task in mind \bullet

Iris dataset

- Measurements of many iris plants
- Three species of iris:
 - setosa
 - versicolor
 - virginica
- Petal length, petal width, sepal length, sepal width (the *features* of the dataset)

¹ https://scikitlearn.org/stable/modules/generated/sklearn.datasets.load_iris.html

R datacamp

Arrays, features & samples

- 2D NumPy array
- Columns are measurements (the *features*)
- Rows represent iris plants (the *samples*)

Iris data is 4-dimensional

- Iris samples are points in 4 dimensional space
- Dimension = number of features
- Dimension too high to visualize!
- ... but unsupervised learning gives insight \bullet

k-means clustering

- Finds clusters of samples
- Number of clusters must be specified
- Implemented in sklearn ("scikit-learn")

print(samples)

[[5. 3.3 1.4 0.2]
[5. 3.5 1.3 0.3]
...
[7.2 3.2 6. 1.8]]

```
from sklearn.cluster import KMeans
model = KMeans(n_clusters=3)
model.fit(samples)
```

KMeans(n_clusters=3)

labels = model.predict(samples)
print(labels)

[0 0 1 1 0 1 2 1 0 1 ...]

Cluster labels for new samples

- New samples can be assigned to existing clusters
- k-means remembers the mean of each cluster (the "centroids")
- Finds the nearest centroid to each new sample

Cluster labels for new samples

print(new_samples)

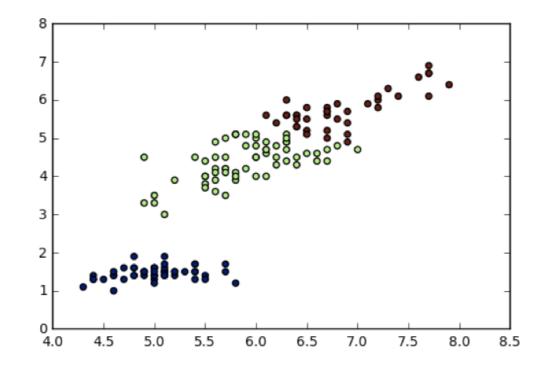
[[5	5.7	4.4	1.5	0.4]
[(5.5	3.	5.5	1.8]
[5	5.8	2.7	5.1	1.9]]

new_labels = model.predict(new_samples) print(new_labels)

[0 2 1]

Scatter plots

- Scatter plot of sepal length vs. petal length
- Each point represents an iris sample
- Color points by cluster labels
- PyPlot (matplotlib.pyplot



Scatter plots

```
import matplotlib.pyplot as plt
xs = samples[:,0]
ys = samples[:,2]
plt.scatter(xs, ys, c=labels)
plt.show()
```


Let's practice!

Evaluating a clustering

UNSUPERVISED LEARNING IN PYTHON

Benjamin Wilson Director of Research at lateral.io

Evaluating a clustering

- Can check correspondence with e.g. iris species
- ... but what if there are no species to check against?
- Measure quality of a clustering
- Informs choice of how many clusters to look for \bullet

Iris: clusters vs species

- k-means found 3 clusters amongst the iris samples
- Do the clusters correspond to the species?

species	setosa	versicolor	virginica	
labels				
0	0	2	36	
1	50	0	0	
2	0	48	14	

Cross tabulation with pandas

- Clusters vs species is a "cross-tabulation"
- Use the pandas library
- Given the species of each sample as a list species

print(species)

['setosa', 'setosa', 'versicolor', 'virginica', ...]

Aligning labels and species

import pandas as pd
df = pd.DataFrame({'labels': labels, 'species': species})
print(df)

	labels	species
0	1	setosa
1	1	setosa
2	2	versicolor
3	2	virginica
4	1	setosa
• • •		

R datacamp

Crosstab of labels and species

ct = pd.crosstab(df['labels'], df['species']) print(ct)

	setosa	versicolor	virginica	
labels				
0	0	2	36	
1	50	Θ	0	
2	0	48	14	

How to evaluate a clustering, if there were no species information?

Measuring clustering quality

- Using only samples and their cluster labels
- A good clustering has tight clusters
- Samples in each cluster bunched together

Inertia measures clustering quality

- Measures how spread out the clusters are (*lower* is better)
- Distance from each sample to centroid of its cluster \bullet
- After fit(), available as attribute inertia_
- k-means attempts to minimize the inertia when choosing clusters

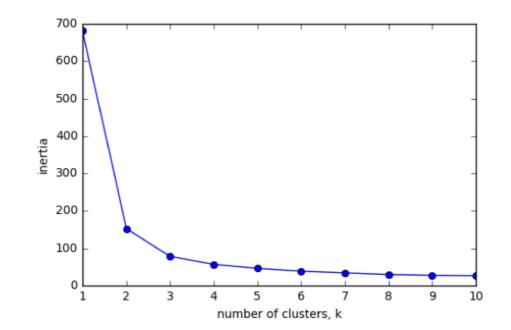
```
from sklearn.cluster import KMeans
model = KMeans(n_clusters=3)
model.fit(samples)
```

```
print(model.inertia_)
```

78.9408414261

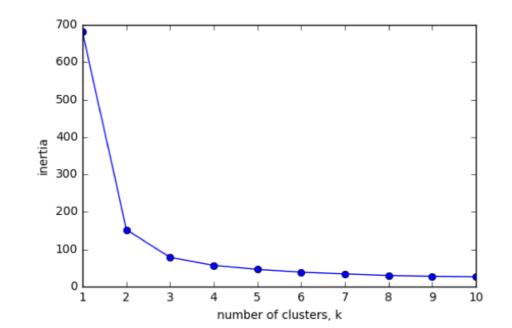
The number of clusters

- Clusterings of the iris dataset with different numbers of clusters
- More clusters means lower inertia
- What is the best number of clusters?



How many clusters to choose?

- A good clustering has tight clusters (so low inertia)
- ... but not too many clusters!
- Choose an "elbow" in the inertia plot
- Where inertia begins to decrease more slowly
- E.g., for iris dataset, 3 is a good choice



Let's practice!

Transforming features for better clusterings

UNSUPERVISED LEARNING IN PYTHON

Benjamin Wilson Director of Research at lateral.io

Piedmont wines dataset

- 178 samples from 3 distinct varieties of red wine: Barolo, Grignolino and Barbera
- Features measure chemical composition e.g. alcohol content
- Visual properties like "color intensity"

¹ Source: https://archive.ics.uci.edu/ml/datasets/Wine

Clustering the wines

from sklearn.cluster import KMeans model = KMeans(n_clusters=3) labels = model.fit_predict(samples)

Clusters vs. varieties

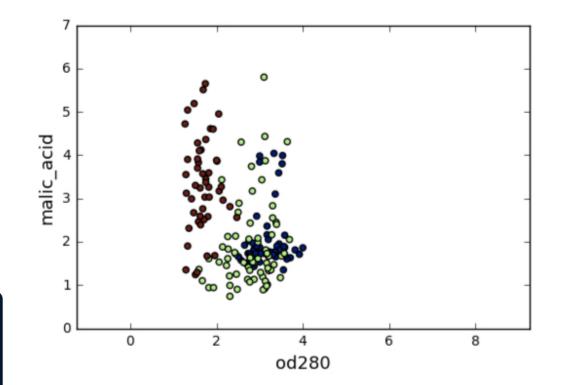
varieties labels	Barbera	Barolo	Grignolino	
0	29	13	20	
1	0	46	1	
2	19	0	50	

R datacamp

Feature variances

- The wine features have very different variances!
- Variance of a feature measures spread of its values

feature	variance	
alcohol	0.65	
malic_acid	1.24	
• • •		
od280	0.50	
proline	99166.71	

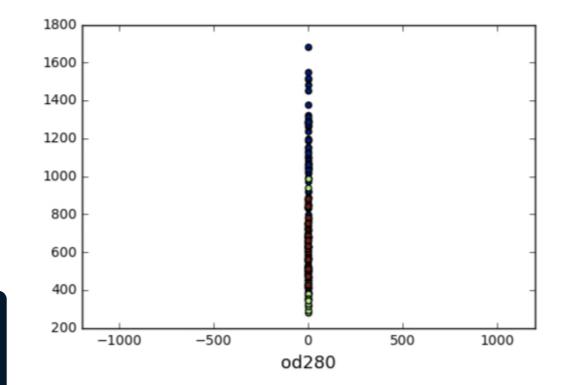


R datacamp

Feature variances

- The wine features have very different variances!
- Variance of a feature measures spread of its values

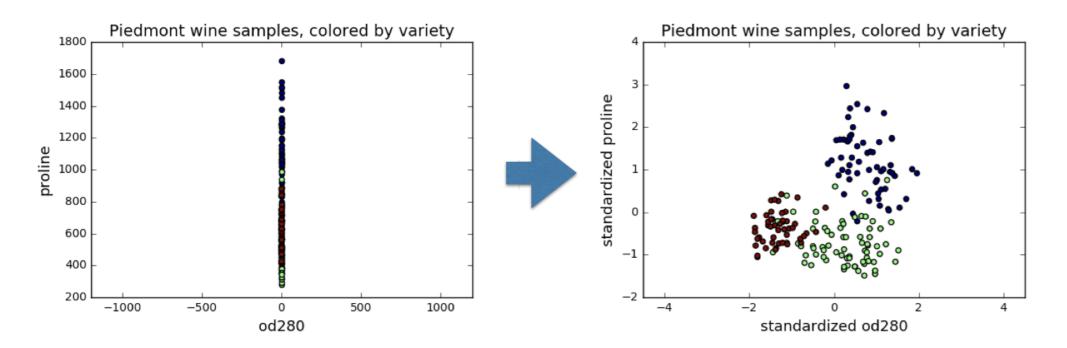
feature	variance	
alcohol	0.65	
malic_acid	1.24	
• • •		
od280	0.50	
proline	99166.71	



R datacamp

StandardScaler

- In kmeans: feature variance = feature influence
- StandardScaler transforms each feature to have mean 0 and variance 1
- Features are said to be "standardized"



sklearn StandardScaler

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(samples)
StandardScaler(copy=True, with_mean=True, with_std=True)
samples_scaled = scaler.transform(samples)
```


Similar methods

- StandardScaler and KMeans have similar methods \bullet
- Use fit() / transform() with StandardScaler
- Use fit() / predict() with KMeans

StandardScaler, then KMeans

- Need to perform two steps: StandardScaler, then KMeans
- Use sklearn pipeline to combine multiple steps
- Data flows from one step into the next

Pipelines combine multiple steps

```
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
scaler = StandardScaler()
kmeans = KMeans(n_clusters=3)
from sklearn.pipeline import make_pipeline
pipeline = make_pipeline(scaler, kmeans)
pipeline.fit(samples)
```

Pipeline(steps=...)

labels = pipeline.predict(samples)

Feature standardization improves clustering

With feature standardization:

varieties labels	Barbera	Barolo	Grignolino
0	Θ	59	3
1	48	0	3
2	Θ	0	65

Without feature standardization was very bad:

varieties labels	Barbera	Barolo	Grignolino
0	29	13	20
1	0	46	1
2	19	0	50

sklearn preprocessing steps

- StandardScaler is a "preprocessing" step
- MaxAbsScaler and Normalizer are other examples

Let's practice!

