Unsupervised
Learning

UNSUPERVISED LEARNING IN PYTHON

O

Benjamin Wilson

Director of Research at lateral.io

X datacamp

Unsupervised learning

 Unsupervised learning finds patterns in data
e E.g., clustering customers by their purchases

e Compressing the data using purchase patterns (dimension
reduction)

UNSUPERVISED LEARNING IN PYTHON

Supervised vs unsupervised learning

e Supervised learning finds patterns for a prediction task
e E.g., classify tumors as benign or cancerous (/abels)
 Unsupervised learning finds patterns in data

e ... but without a specific prediction task in mind

UNSUPERVISED LEARNING IN PYTHON

Iris dataset

e Measurements of many iris
plants

e Three species of iris:
°© setosa

o versicolor

o virginica

e Petal length, petal width,
sepal length, sepal width
(the features of the dataset)

1 https://scikit-
learn.org/stable/modules/generated/sklearn.datasets.load_iris.html

X datacamp UNSUPERVISED LEARNING IN PYTHON

Arrays, features & samples
e 2D NumPy array

e Columns are measurements (the features)

e Rows represent iris plants (the samples)

UNSUPERVISED LEARNING IN PYTHON

Iris data is 4-dimensiondl

e |ris samples are points in 4 dimensional space
e Dimension = number of features
e Dimension too high to visualize!

e ... but unsupervised learning gives insight

UNSUPERVISED LEARNING IN PYTHON

k-means clustering

e Finds clusters of samples
e Number of clusters must be specified

e Implemented in sklearn ("scikit-learn")

UNSUPERVISED LEARNING IN PYTHON

print(samples)

3.3 1.4 0.2]
3.5 1.3 0.3]

[7.2 3.2 6. 1.8]]

from sklearn.cluster import KMeans
model = KMeans(n_clusters=3)

model.fit(samples)

KMeans(n_clusters=3)

labels = model.predict(samples)
print(labels)

0011012101 ...]

UNSUPERVISED LEARNING IN PYTHON

Cluster labels for new samples

e New samples can be assigned to existing clusters

e k-means remembers the mean of each cluster (the
"centroids")

e Finds the nearest centroid to each new sample

UNSUPERVISED LEARNING IN PYTHON

Cluster labels for new samples

print(new_samples)

[[5.7 4.4 1.5 0.4]
[6.5 3. 5.5 1.8]

[5.8 2.7 5.1 1.9]]

new_labels = model.predict(new_samples)
print(new_labels)

UNSUPERVISED LEARNING IN PYTHON

Scatter plots

e Scatter plot of sepal length
7t .8
vs. petal length | et
. L) 00°383,8 © 8,8
e Each point represents an iris o 0000 0953g083° °
at o g88°0
sample | o2,
2 *
e Color points by cluster | eentioglecty 3,
labels o!

e PyPlot (matplotlib.pyplot

)

UNSUPERVISED LEARNING IN PYTHON

Scatter plots

import matplotlib.pyplot as plt
xs = samples[:,0]

ys = samples|[:, 2]
plt.scatter(xs, ys, c=labels)
plt.show()

UNSUPERVISED LEARNING IN PYTHON

Let's practice!

UNSUPERVISED LEARNING IN PYTHON

Evaluating a
clustering

UNSUPERVISED LEARNING IN PYTHON

O

Benjamin Wilson

Director of Research at lateral.io

X datacamp

Evaluating a clustering

e Can check correspondence with e.g. iris species

e ... but what if there are no species to check against?

e Measure quality of a clustering

e Informs choice of how many clusters to look for

UNSUPERVISED LEARNING IN PYTHON

Iris: clusters vs species

e k-means found 3 clusters amongst the iris samples

e Do the clusters correspond to the species?

specles setosa versicolor virglnica

Labels
36
0

UNSUPERVISED LEARNING IN PYTHON

Cross tabulation with pandas

e Clusters vs species is a "cross-tabulation”
e Use the pandas library

e Given the species of each sample as a list species

print(species)

['setosa', 'setosa', 'versicolor', 'virginica', ...

UNSUPERVISED LEARNING IN PYTHON

Aligning labels and species

import pandas as pd
df = pd.DataFrame({'labels': labels, 'species': species})
print(df)

labels speciles
1 setosa
setosa

versicolor

1
2
2 virginica
1

setosa

UNSUPERVISED LEARNING IN PYTHON

Crosstab of labels and species

ct = pd.crosstab(df['labels'], df['species'])
print(ct)

speclies setosa versicolor virginica

lLabels
36
0
14

How to evaluate a clustering, if there were no species
information?

UNSUPERVISED LEARNING IN PYTHON

Measuring clustering quality

e Using only samples and their cluster labels

e A good clustering has tight clusters

e Samples in each cluster bunched together

UNSUPERVISED LEARNING IN PYTHON

Inertia measures clustering quality

e Measures how spread out the clusters are (Jower is better)
e Distance from each sample to centroid of its cluster
o After fit() , available as attribute inertia_

e k-means attempts to minimize the inertia when choosing

clusters

from sklearn.cluster import KMeans

model = KMeans(n_clusters=3)
model.fit(samples)
print(model.inertia_)

78.9408414261

UNSUPERVISED LEARNING IN PYTHON

The number of clusters

e Clusterings of the iris oo
dataset with different

500

numbers of clusters

400 |

inertia

300

e More clusters means lower

200

inertia ool

® tht iS the beSt number Of number of clusters, k
clusters?

UNSUPERVISED LEARNING IN PYTHON

How many clusters to choose?
e A good clustering has tight 700

clusters (so low inertia)

500

e ...but not too many clusters! .«

300

inert

e Choose an "elbow" in the

inertia plot

number of clusters, k

e Where inertia begins to
decrease more slowly

e E.g., foriris dataset, 3 is a
good choice

UNSUPERVISED LEARNING IN PYTHON

Let's practice!

UNSUPERVISED LEARNING IN PYTHON

Transforming
features for better
clusterings

UNSUPERVISED LEARNING IN PYTHON

O

Benjamin Wilson

Director of Research at lateral.io

Piedmont wines dataset

e 178 samples from 3 distinct varieties of red wine: Barolo,
Grignolino and Barbera

e Features measure chemical composition e.g. alcohol content

e Visual properties like "color intensity”

1 Source: https://archive.ics.uci.edu/ml/datasets/Wine

UNSUPERVISED LEARNING IN PYTHON

Clustering the wines

from sklearn.cluster import KMeans
model = KMeans(n_clusters=3)
labels = model.fit_predict(samples)

UNSUPERVISED LEARNING IN PYTHON

Clusters vs. varieties

df pd.DataFrame({'labels': labels,

'varieties': varieties})
ct = pd.crosstab(df['labels'], df['varieties'])
print(ct)

varieties Barbera Barolo Grignolino
lLabels

29 20

0 1

UNSUPERVISED LEARNING IN PYTHON

Feature variances

e The wine features have very 7

different variances! °l)

5t o’ o
e Variance of a feature 2, L AR

! ° %"

measures spread of its 5 3 el o

e :& 90'.%

2L . 00 o8

values "%8?#3
1 %o g{)@ -

feature variance "% 2 4 6 8

alcohol 0.65
malic_acid 1.24

0d280 0.50
proline 99166.71

UNSUPERVISED LEARNING IN PYTHON

Feature variances

e The wine features have very o

different variances! | g
1400 | p
e Variance of a feature 200
1000 |
measures spread of its ol
values 600 |
400 |

feature variance 200 =000 ~500 0 500 1000
alcohol 0.65
malic_ac1id 1.24

0d280 0.50
proline 99166.71

UNSUPERVISED LEARNING IN PYTHON

StandardScaler

e |n kmeans: feature variance = feature influence

e StandardScaler transforms each feature to have mean O

and variance 1

e Features are said to be "standardized”

1800

Piedmont wine samples, colored by variety

L]
1600 -

1400 | e
1200 +

1000

proline

800 |

600

400 |

200

Tooo 500 0
0d280

|
500

1
1000

>

standardized proline

Piedmont wine samples, colored by variety

standardized od280

UNSUPERVISED LEARNING IN PYTHON

sklearn StandardScaler

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(samples)

StandardScaler(copy=True, with_mean=True, with_std=True)
samples_scaled = scaler.transform(samples)

UNSUPERVISED LEARNING IN PYTHON

Similar methods

e StandardScaler and KMeans have similar methods
e Use fit() / transform() with StandardScaler

e Use fit() / predict() with KMeans

UNSUPERVISED LEARNING IN PYTHON

StandardScaler, then KMeans

e Need to perform two steps: StandardScaler , then KMeans
e Use sklearn pipeline to combine multiple steps

e Data flows from one step into the next

UNSUPERVISED LEARNING IN PYTHON

Pipelines combine multiple steps

from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans

scaler = StandardScaler()

kmeans = KMeans(n_clusters=3)

from sklearn.pipeline import make_pipeline
pipeline = make_pipeline(scaler, kmeans)
pipeline.fit(samples)

Pipeline(steps=...)

labels = pipeline.predict(samples)

UNSUPERVISED LEARNING IN PYTHON

Feature standardization improves clustering

With feature standardization:

varieties Barbera Barolo Grignolino
lLabels
59

varieties Barbera Barolo Grignolino
lLabels

29 13 20
0 46 1
19 0 50

UNSUPERVISED LEARNING IN PYTHON

sklearn preprocessing steps

e StandardScaler is a "preprocessing” step

e MaxAbsScaler and Normalizer are other examples

UNSUPERVISED LEARNING IN PYTHON

Let's practice!

UNSUPERVISED LEARNING IN PYTHON

