
Unsupervised
Learning

UNSUPERV ISED LEARNING IN PYTHON

Benjamin Wilson
Director of Research at lateral.io

UNSUPERVISED LEARNING IN PYTHON

Unsupervised learning
Unsupervised learning finds patterns in data

E.g., clustering customers by their purchases

Compressing the data using purchase patterns (dimension
reduction)

UNSUPERVISED LEARNING IN PYTHON

Supervised vs unsupervised learning
Supervised learning finds patterns for a prediction task

E.g., classify tumors as benign or cancerous (labels)

Unsupervised learning finds patterns in data

... but without a specific prediction task in mind

UNSUPERVISED LEARNING IN PYTHON

Iris dataset
Measurements of many iris
plants

Three species of iris:
setosa

versicolor

virginica

Petal length, petal width,
sepal length, sepal width
(the features of the dataset)

 https://scikit-
learn.org/stable/modules/generated/sklearn.datasets.load_iris.html
1

UNSUPERVISED LEARNING IN PYTHON

Arrays, features & samples
2D NumPy array

Columns are measurements (the features)

Rows represent iris plants (the samples)

UNSUPERVISED LEARNING IN PYTHON

Iris data is 4-dimensional
Iris samples are points in 4 dimensional space

Dimension = number of features

Dimension too high to visualize!

... but unsupervised learning gives insight

UNSUPERVISED LEARNING IN PYTHON

k-means clustering
Finds clusters of samples

Number of clusters must be specified

Implemented in sklearn ("scikit-learn")

UNSUPERVISED LEARNING IN PYTHON

print(samples)

[[5. 3.3 1.4 0.2]
 [5. 3.5 1.3 0.3]
 ...
 [7.2 3.2 6. 1.8]]

from sklearn.cluster import KMeans
model = KMeans(n_clusters=3)
model.fit(samples)

KMeans(n_clusters=3)

labels = model.predict(samples)
print(labels)

[0 0 1 1 0 1 2 1 0 1 ...]

UNSUPERVISED LEARNING IN PYTHON

Cluster labels for new samples
New samples can be assigned to existing clusters

k-means remembers the mean of each cluster (the
"centroids")

Finds the nearest centroid to each new sample

UNSUPERVISED LEARNING IN PYTHON

Cluster labels for new samples
print(new_samples)

[[5.7 4.4 1.5 0.4]
 [6.5 3. 5.5 1.8]
 [5.8 2.7 5.1 1.9]]

new_labels = model.predict(new_samples)
print(new_labels)

[0 2 1]

UNSUPERVISED LEARNING IN PYTHON

Scatter plots
Scatter plot of sepal length
vs. petal length

Each point represents an iris
sample

Color points by cluster
labels

PyPlot (matplotlib.pyplot
)

UNSUPERVISED LEARNING IN PYTHON

Scatter plots
import matplotlib.pyplot as plt
xs = samples[:,0]
ys = samples[:,2]
plt.scatter(xs, ys, c=labels)
plt.show()

Let's practice!
UNSUPERV ISED LEARNING IN PYTHON

Evaluating a
clustering

UNSUPERV ISED LEARNING IN PYTHON

Benjamin Wilson
Director of Research at lateral.io

UNSUPERVISED LEARNING IN PYTHON

Evaluating a clustering
Can check correspondence with e.g. iris species

... but what if there are no species to check against?

Measure quality of a clustering

Informs choice of how many clusters to look for

UNSUPERVISED LEARNING IN PYTHON

Iris: clusters vs species
k-means found 3 clusters amongst the iris samples

Do the clusters correspond to the species?

species setosa versicolor virginica
labels
0 0 2 36
1 50 0 0
2 0 48 14

UNSUPERVISED LEARNING IN PYTHON

Cross tabulation with pandas
Clusters vs species is a "cross-tabulation"

Use the pandas library

Given the species of each sample as a list species

print(species)

['setosa', 'setosa', 'versicolor', 'virginica', ...]

UNSUPERVISED LEARNING IN PYTHON

Aligning labels and species
import pandas as pd
df = pd.DataFrame({'labels': labels, 'species': species})
print(df)

 labels species
0 1 setosa
1 1 setosa
2 2 versicolor
3 2 virginica
4 1 setosa
...

UNSUPERVISED LEARNING IN PYTHON

Crosstab of labels and species
ct = pd.crosstab(df['labels'], df['species'])
print(ct)

species setosa versicolor virginica
labels
0 0 2 36
1 50 0 0
2 0 48 14

How to evaluate a clustering, if there were no species
information?

UNSUPERVISED LEARNING IN PYTHON

Measuring clustering quality
Using only samples and their cluster labels

A good clustering has tight clusters

Samples in each cluster bunched together

UNSUPERVISED LEARNING IN PYTHON

Inertia measures clustering quality
Measures how spread out the clusters are (lower is better)

Distance from each sample to centroid of its cluster

After fit() , available as attribute inertia_

k-means attempts to minimize the inertia when choosing
clusters

from sklearn.cluster import KMeans

model = KMeans(n_clusters=3)
model.fit(samples)
print(model.inertia_)

78.9408414261

UNSUPERVISED LEARNING IN PYTHON

The number of clusters
Clusterings of the iris
dataset with different
numbers of clusters

More clusters means lower
inertia

What is the best number of
clusters?

UNSUPERVISED LEARNING IN PYTHON

How many clusters to choose?
A good clustering has tight
clusters (so low inertia)

... but not too many clusters!

Choose an "elbow" in the
inertia plot

Where inertia begins to
decrease more slowly

E.g., for iris dataset, 3 is a
good choice

Let's practice!
UNSUPERV ISED LEARNING IN PYTHON

Transforming
features for better

clusterings
UNSUPERV ISED LEARNING IN PYTHON

Benjamin Wilson
Director of Research at lateral.io

UNSUPERVISED LEARNING IN PYTHON

Piedmont wines dataset
178 samples from 3 distinct varieties of red wine: Barolo,
Grignolino and Barbera

Features measure chemical composition e.g. alcohol content

Visual properties like "color intensity"

 Source: https://archive.ics.uci.edu/ml/datasets/Wine1

UNSUPERVISED LEARNING IN PYTHON

Clustering the wines
from sklearn.cluster import KMeans
model = KMeans(n_clusters=3)
labels = model.fit_predict(samples)

UNSUPERVISED LEARNING IN PYTHON

Clusters vs. varieties
df = pd.DataFrame({'labels': labels,
 'varieties': varieties})
ct = pd.crosstab(df['labels'], df['varieties'])
print(ct)

varieties Barbera Barolo Grignolino
labels
0 29 13 20
1 0 46 1
2 19 0 50

UNSUPERVISED LEARNING IN PYTHON

Feature variances
The wine features have very
different variances!

Variance of a feature
measures spread of its
values

feature variance
alcohol 0.65
malic_acid 1.24
...
od280 0.50
proline 99166.71

UNSUPERVISED LEARNING IN PYTHON

Feature variances
The wine features have very
different variances!

Variance of a feature
measures spread of its
values

feature variance
alcohol 0.65
malic_acid 1.24
...
od280 0.50
proline 99166.71

UNSUPERVISED LEARNING IN PYTHON

StandardScaler
In kmeans: feature variance = feature influence

StandardScaler transforms each feature to have mean 0
and variance 1

Features are said to be "standardized"

UNSUPERVISED LEARNING IN PYTHON

sklearn StandardScaler
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(samples)
StandardScaler(copy=True, with_mean=True, with_std=True)
samples_scaled = scaler.transform(samples)

UNSUPERVISED LEARNING IN PYTHON

Similar methods
StandardScaler and KMeans have similar methods

Use fit() / transform() with StandardScaler

Use fit() / predict() with KMeans

UNSUPERVISED LEARNING IN PYTHON

StandardScaler, then KMeans
Need to perform two steps: StandardScaler , then KMeans

Use sklearn pipeline to combine multiple steps

Data flows from one step into the next

UNSUPERVISED LEARNING IN PYTHON

Pipelines combine multiple steps
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
scaler = StandardScaler()
kmeans = KMeans(n_clusters=3)
from sklearn.pipeline import make_pipeline
pipeline = make_pipeline(scaler, kmeans)
pipeline.fit(samples)

Pipeline(steps=...)

labels = pipeline.predict(samples)

UNSUPERVISED LEARNING IN PYTHON

Feature standardization improves clustering
With feature standardization:

varieties Barbera Barolo Grignolino
labels
0 0 59 3
1 48 0 3
2 0 0 65

Without feature standardization was very bad:

varieties Barbera Barolo Grignolino
labels
0 29 13 20
1 0 46 1
2 19 0 50

UNSUPERVISED LEARNING IN PYTHON

sklearn preprocessing steps
StandardScaler is a "preprocessing" step

MaxAbsScaler and Normalizer are other examples

Let's practice!
UNSUPERV ISED LEARNING IN PYTHON

