Feature selection

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

What is feature selection?

- Selecting features to be used for modeling
- Doesn't create new features
- Improve model's performance \bullet

When to select features

city	state	lat	long
hico	tx	31.982778	-98.033333
mackinaw city	mi	45.783889	-84.727778
winchester	ky	37.990000	-84.179722

- Reducing noise
- Features are strongly statistically correlated
- Reduce overall variance

Removing redundant features

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

Redundant features

- Remove noisy features
- Remove correlated features
- Remove duplicated features

Scenarios for manual removal

city	state	lat	long
hico	tx	31.982778	-98.033333
mackinaw city	mi	45.783889	-84.727778
winchester	ky	37.990000	-84.179722

Correlated features

- Statistically correlated: features move together directionally
- Linear models assume feature independence \bullet
- Pearson's correlation coefficient

Correlated features

print(df)

print(df.corr())

	А	В	С
А	1.000000	0.787194	0.543479
В	0.787194	1.000000	0.565468
С	0.543479	0.565468	1.000000

Selecting features using text vectors

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

Looking at word weights

Looking at word weights

<pre>vocab = {v:k for k,v in tfidf_vec.vocabularyitems()}</pre>	<pre>zipped_row = dict(zip(tex</pre>
print(vocab)	<pre>print(zipped_row)</pre>
<pre>{0: '200', 1: '204th', 2: '33rd', 3: 'ahead', 4: 'alley', </pre>	<pre>{5: 0.1597882543332701, 7: 0.26576432098763175, 8: 0.18599931331925676, 9: 0.26576432098763175, 10: 0.13077355258450366, </pre>

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

xt_tfidf[3].indices, xt_tfidf[3].data))

Looking at word weights

def return_weights(vocab, vector, vector_index):

```
return {vocab[i]:zipped[i] for i in vector[vector_index].indices}
```

print(return_weights(vocab, text_tfidf, 3))

```
{'and': 0.1597882543332701,
'are': 0.26576432098763175,
'at': 0.18599931331925676,
```

• • •

Dimensionality reduction

PREPROCESSING FOR MACHINE LEARNING IN PYTHON

Dimensionality reduction and PCA

- Unsupervised learning method \bullet
- Combines/decomposes a feature space
- Feature extraction here we'll use to reduce our feature space

- Principal component analysis
- Linear transformation to uncorrelated space
- Captures as much variance as possible in each component

PCA in scikit-learn

from sklearn.decomposition import PCA pca = PCA()df_pca = pca.fit_transform(df)

print(df_pca)

[88.4583, 18.7764, -2.2379, ..., 0.0954, 0.0361, -0.0034], [93.4564, 18.6709, -1.7887, ..., -0.0509, 0.1331, 0.0119], [-186.9433, -0.2133, -5.6307, ..., 0.0332, 0.0271, 0.0055]

print(pca.explained_variance_ratio_)

[0.9981, 0.0017, 0.0001, 0.0001, ...]

PCA caveats

- Difficult to interpret components \bullet
- End of preprocessing journey

