
spaCy pipelines
NATURAL LANGUAGE PROCESS ING WITH SPACY

Azadeh Mobasher
Principal Data Scientist

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy pipelines

spaCy first tokenizes the text to produce a Doc object

The Doc is processed in several different steps of processing pipeline

import spacy
nlp = spacy.load("en_core_web_sm")

doc = nlp(example_text)

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy pipelines
A pipeline is a sequence of pipes, or actors on data

A spaCy NER pipeline:
Tokenization

Named entity identification

Named entity classification

print([ent.text for ent in doc.ents])

NATURAL LANGUAGE PROCESSING WITH SPACY

Adding pipes

sentencizer : spaCy pipeline component for sentence segmentation.

text = " ".join(["This is a test sentence."]*10000)
en_core_sm_nlp = spacy.load("en_core_web_sm")
start_time = time.time()
doc = en_core_sm_nlp(text)
print(f"Finished processing with en_core_web_sm model in
 {round((time.time() - start_time)/60.0 , 5)} minutes")

>>> Finished processing with en_core_web_sm model in 0.09332 minutes

NATURAL LANGUAGE PROCESSING WITH SPACY

Adding pipes

Create a blank model and add a sentencizer pipe:

blank_nlp = spacy.blank("en")
blank_nlp.add_pipe("sentencizer")
start_time = time.time()
doc = blank_nlp(text)
print(f"Finished processing with blank model in
 {round((time.time() - start_time)/60.0 , 5)} minutes")

>>> Finished processing with blank model in 0.00091 minutes

NATURAL LANGUAGE PROCESSING WITH SPACY

Analyzing pipeline components
nlp.analyze_pipes() analyzes a spaCy pipeline to determine:

Attributes that pipeline components set

Scores a component produces during training

Presence of all required attributes

Setting pretty to True will print a table instead of only returning the structured data.

import spacy

nlp = spacy.load("en_core_web_sm")
analysis = nlp.analyze_pipes(pretty=True)

NATURAL LANGUAGE PROCESSING WITH SPACY

Analyzing pipeline components

Let's practice!
NATURAL LANGUAGE PROCESS ING WITH SPACY

spaCy EntityRuler
NATURAL LANGUAGE PROCESS ING WITH SPACY

Azadeh Mobasher
Principal Data Scientist

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy EntityRuler

EntityRuler adds named-entities to a Doc container

It can be used on its own or combined with EntityRecognizer

Phrase entity patterns for exact string matches (string):

{"label": "ORG", "pattern": "Microsoft"}

Token entity patterns with one dictionary describing one token (list):

{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}

NATURAL LANGUAGE PROCESSING WITH SPACY

Adding EntityRuler to spaCy pipeline

Using .add_pipe() method

List of patterns can be added using .add_patterns() method

nlp = spacy.blank("en")
entity_ruler = nlp.add_pipe("entity_ruler")
patterns = [{"label": "ORG", "pattern": "Microsoft"},
 {"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}]
entity_ruler.add_patterns(patterns)

NATURAL LANGUAGE PROCESSING WITH SPACY

Adding EntityRuler to spaCy pipeline

.ents store the results of an EntityLinker component

doc = nlp("Microsoft is hiring software developer in San Francisco.")
print([(ent.text, ent.label_) for ent in doc.ents])

[('Microsoft', 'ORG'), ('San Francisco', 'GPE')]

NATURAL LANGUAGE PROCESSING WITH SPACY

EntityRuler in action

Integrates with spaCy pipeline components

Enhances the named-entity recognizer

spaCy model without EntityRuler :

nlp = spacy.load("en_core_web_sm")

doc = nlp("Manhattan associates is a company in the U.S.")
print([(ent.text, ent.label_) for ent in doc.ents])

>>> [('Manhattan', 'GPE'), ('U.S.', 'GPE')]

NATURAL LANGUAGE PROCESSING WITH SPACY

EntityRuler in action

EntityRuler added after existing ner component:

nlp = spacy.load("en_core_web_sm")
ruler = nlp.add_pipe("entity_ruler", after='ner')
patterns = [{"label": "ORG", "pattern": [{"lower": "manhattan"}, {"lower": "associates"}]}]
ruler.add_patterns(patterns)

doc = nlp("Manhattan associates is a company in the U.S.")
print([(ent.text, ent.label_) for ent in doc.ents])

>>> [('Manhattan', 'GPE'), ('U.S.', 'GPE')]

NATURAL LANGUAGE PROCESSING WITH SPACY

EntityRuler in action

EntityRuler added before existing ner component:

nlp = spacy.load("en_core_web_sm")
ruler = nlp.add_pipe("entity_ruler", before='ner')
patterns = [{"label": "ORG", "pattern": [{"lower": "manhattan"}, {"lower": "associates"}]}]
ruler.add_patterns(patterns)

doc = nlp("Manhattan associates is a company in the U.S.")
print([(ent.text, ent.label_) for ent in doc.ents])

>>> [('Manhattan associates', 'ORG'), ('U.S.', 'GPE')]

Let's practice!
NATURAL LANGUAGE PROCESS ING WITH SPACY

RegEx with spaCy
NATURAL LANGUAGE PROCESS ING WITH SPACY

Azadeh Mobasher
Principal Data Scientist

NATURAL LANGUAGE PROCESSING WITH SPACY

What is RegEx?

Rule-based information extraction (IR) is useful for many NLP tasks

Regular expression (RegEx) is used with complex string matching patterns

RegEx finds and retrieves patterns or replace matching patterns

NATURAL LANGUAGE PROCESSING WITH SPACY

RegEx strengths and weaknesses
Pros:

Enables writing robust rules to retrieve
information

Can allow us to find many types of
variance in strings

Runs fast

Supported by programming languages

Cons:

Syntax is challenging for beginners

Requires knowledge of all the ways a
pattern may be mentioned in texts

NATURAL LANGUAGE PROCESSING WITH SPACY

RegEx in Python

Python comes prepackaged with a RegEx library, re .

The first step in using re package is to define a pattern .

The resulting pattern is used to find matching content.

import re

pattern = r"((\d){3}-(\d){3}-(\d){4})"
text = "Our phone number is 832-123-5555 and their phone number is 425-123-4567."

NATURAL LANGUAGE PROCESSING WITH SPACY

RegEx in Python

We use .finditer() method from re package

iter_matches = re.finditer(pattern, text)
for match in iter_matches:
 start_char = match.start()
 end_char = match.end()
 print ("Start character: ", start_char, "| End character: ", end_char,
 "| Matching text: ", text[start_char:end_char])

>>> Start character: 20 | End character: 32 | Matching text: 832-123-5555
Start character: 59 | End character: 71 | Matching text: 425-123-4567

NATURAL LANGUAGE PROCESSING WITH SPACY

RegEx in spaCy
RegEx in three pipeline components: Matcher , PhraseMatcher and EntityRuler .

text = "Our phone number is 832-123-5555 and their phone number is 425-123-4567."
nlp = spacy.blank("en")
patterns = [{"label": "PHONE_NUMBER", "pattern": [{"SHAPE": "ddd"},
 {"ORTH": "-"}, {"SHAPE": "ddd"},
 {"ORTH": "-"}, {"SHAPE": "dddd"}]}]
ruler = nlp.add_pipe("entity_ruler")
ruler.add_patterns(patterns)
doc = nlp(text)
print ([(ent.text, ent.label_) for ent in doc.ents])

>>> [('832-123-5555', 'PHONE_NUMBER'), ('425-123-4567', 'PHONE_NUMBER')]

Let's practice!
NATURAL LANGUAGE PROCESS ING WITH SPACY

spaCy Matcher and
PhraseMatcher

NATURAL LANGUAGE PROCESS ING WITH SPACY

Azadeh Mobasher
Principal Data Scientist

NATURAL LANGUAGE PROCESSING WITH SPACY

Matcher in spaCy

RegEx patterns can be complex, difficult to read and debug.

spaCy provides a readable and production-level alternative, the Matcher class.

import spacy
from spacy.matcher import Matcher
nlp = spacy.load("en_core_web_sm")
doc = nlp("Good morning, this is our first day on campus.")
matcher = Matcher(nlp.vocab)

NATURAL LANGUAGE PROCESSING WITH SPACY

Matcher in spaCy

Matching output include start and end token indices of the matched pattern.

pattern = [{"LOWER": "good"}, {"LOWER": "morning"}]
matcher.add("morning_greeting", [pattern])
matches = matcher(doc)
for match_id, start, end in matches:
 print("Start token: ", start, " | End token: ", end,
 "| Matched text: ", doc[start:end].text)

>>> Start token: 0 | End token: 2 | Matched text: Good morning

NATURAL LANGUAGE PROCESSING WITH SPACY

Matcher extended syntax support

Allows operators in defining the matching patterns.

Similar operators to Python's in , not in and comparison operators

Attribute Value type Description

IN any type Attribute value is a member of a list

NOT_IN any type Attribute value is not a member of a list

== , >= , <= , > , < int, float Comparison operators for equality or inequality checks

NATURAL LANGUAGE PROCESSING WITH SPACY

Matcher extended syntax support
Using IN operator to match both good morning and good evening

doc = nlp("Good morning and good evening.")
matcher = Matcher(nlp.vocab)
pattern = [{"LOWER": "good"}, {"LOWER": {"IN": ["morning", "evening"]}}]
matcher.add("morning_greeting", [pattern])
matches = matcher(doc)

The output of matching using IN operator

for match_id, start, end in matches:
 print("Start token: ", start, " | End token: ", end,
 "| Matched text: ", doc[start:end].text)

>>> Start token: 0 | End token: 2 | Matched text: Good morning
Start token: 3 | End token: 5 | Matched text: good evening

NATURAL LANGUAGE PROCESSING WITH SPACY

PhraseMatcher in spaCy

PhraseMatcher class matches a long list of phrases in a given text.

from spacy.matcher import PhraseMatcher
nlp = spacy.load("en_core_web_sm")
matcher = PhraseMatcher(nlp.vocab)
terms = ["Bill Gates", "John Smith"]

NATURAL LANGUAGE PROCESSING WITH SPACY

PhraseMatcher in spaCy
PhraseMatcher outputs include start and end token indices of the matched pattern

patterns = [nlp.make_doc(term) for term in terms]
matcher.add("PeopleOfInterest", patterns)
doc = nlp("Bill Gates met John Smith for an important discussion regarding
 importance of AI.")
matches = matcher(doc)
for match_id, start, end in matches:
 print("Start token: ", start, " | End token: ", end,
 "| Matched text: ", doc[start:end].text)

>>> Start token: 0 | End token: 2 | Matched text: Bill Gates
Start token: 3 | End token: 5 | Matched text: John Smith

NATURAL LANGUAGE PROCESSING WITH SPACY

PhraseMatcher in spaCy
We can use attr argument of the PhraseMatcher class

matcher = PhraseMatcher(nlp.vocab, attr = "LOWER")
terms = ["Government", "Investment"]
patterns = [nlp.make_doc(term) for term in terms]
matcher.add("InvestmentTerms", patterns)
doc = nlp("It was interesting to the investment division of the government.")

matcher = PhraseMatcher(nlp.vocab, attr = "SHAPE")
terms = ["110.0.0.0", "101.243.0.0"]
patterns = [nlp.make_doc(term) for term in terms]
matcher.add("IPAddresses", patterns)
doc = nlp("The tracked IP address was 234.135.0.0.")

Let's practice!
NATURAL LANGUAGE PROCESS ING WITH SPACY

