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spaCy pipelines
 

spaCy  first tokenizes the text to produce a Doc  object

The Doc  is processed in several different steps of processing pipeline

 

import spacy 
nlp = spacy.load("en_core_web_sm") 

doc = nlp(example_text) 
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spaCy pipelines
A pipeline is a sequence of pipes, or actors on data

A spaCy  NER pipeline:
Tokenization

Named entity identification

Named entity classification  

print([ent.text for ent in doc.ents]) 
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Adding pipes
 

sentencizer : spaCy  pipeline component for sentence segmentation.

text = " ".join(["This is a test sentence."]*10000)  
en_core_sm_nlp = spacy.load("en_core_web_sm") 
start_time = time.time() 
doc = en_core_sm_nlp(text)  
print(f"Finished processing with en_core_web_sm model in 
        {round((time.time() - start_time)/60.0 , 5)} minutes") 

>>> Finished processing with en_core_web_sm model in 0.09332 minutes
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Adding pipes
 

Create a blank model and add a sentencizer  pipe:

blank_nlp = spacy.blank("en")  
blank_nlp.add_pipe("sentencizer")  
start_time = time.time() 
doc = blank_nlp(text) 
print(f"Finished processing with blank model in 
       {round((time.time() - start_time)/60.0 , 5)} minutes") 

>>> Finished processing with blank model in 0.00091 minutes
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Analyzing pipeline components
nlp.analyze_pipes()  analyzes a spaCy  pipeline to determine:

Attributes that pipeline components set

Scores a component produces during training

Presence of all required attributes

 

Setting pretty  to True  will print a table instead of only returning the structured data.

import spacy 
 
nlp = spacy.load("en_core_web_sm") 
analysis = nlp.analyze_pipes(pretty=True) 
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Analyzing pipeline components
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spaCy EntityRuler
 

EntityRuler  adds named-entities to a Doc  container

It can be used on its own or combined with EntityRecognizer

Phrase entity patterns for exact string matches (string):

{"label": "ORG", "pattern": "Microsoft"} 

Token entity patterns with one dictionary describing one token (list):

{"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]} 
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Adding EntityRuler to spaCy pipeline
 

Using .add_pipe()  method

List of patterns can be added using .add_patterns()  method

 

nlp = spacy.blank("en") 
entity_ruler = nlp.add_pipe("entity_ruler") 
patterns = [{"label": "ORG", "pattern": "Microsoft"}, 
            {"label": "GPE", "pattern": [{"LOWER": "san"}, {"LOWER": "francisco"}]}] 
entity_ruler.add_patterns(patterns) 
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Adding EntityRuler to spaCy pipeline
 

.ents  store the results of an EntityLinker  component

 

doc = nlp("Microsoft is hiring software developer in San Francisco.") 
print([(ent.text, ent.label_) for ent in doc.ents]) 

[('Microsoft', 'ORG'), ('San Francisco', 'GPE')] 
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EntityRuler in action
 

Integrates with spaCy  pipeline components

Enhances the named-entity recognizer

spaCy  model without EntityRuler :

nlp = spacy.load("en_core_web_sm") 
 
doc = nlp("Manhattan associates is a company in the U.S.") 
print([(ent.text, ent.label_) for ent in doc.ents]) 

>>> [('Manhattan', 'GPE'), ('U.S.', 'GPE')] 
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EntityRuler in action
 

EntityRuler  added after existing ner  component:

nlp = spacy.load("en_core_web_sm") 
ruler = nlp.add_pipe("entity_ruler", after='ner') 
patterns = [{"label": "ORG", "pattern": [{"lower": "manhattan"}, {"lower": "associates"}]}] 
ruler.add_patterns(patterns) 
 
doc = nlp("Manhattan associates is a company in the U.S.") 
print([(ent.text, ent.label_) for ent in doc.ents]) 

>>> [('Manhattan', 'GPE'), ('U.S.', 'GPE')] 
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EntityRuler in action
 

EntityRuler  added before existing ner  component:

nlp = spacy.load("en_core_web_sm") 
ruler = nlp.add_pipe("entity_ruler", before='ner') 
patterns = [{"label": "ORG", "pattern": [{"lower": "manhattan"}, {"lower": "associates"}]}] 
ruler.add_patterns(patterns) 
 
doc = nlp("Manhattan associates is a company in the U.S.") 
print([(ent.text, ent.label_) for ent in doc.ents]) 

>>> [('Manhattan associates', 'ORG'), ('U.S.', 'GPE')] 
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What is RegEx?
 

Rule-based information extraction (IR) is useful for many NLP tasks

Regular expression (RegEx) is used with complex string matching patterns

RegEx finds and retrieves patterns or replace matching patterns
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RegEx strengths and weaknesses
Pros:

Enables writing robust rules to retrieve
information

Can allow us to find many types of
variance in strings

Runs fast

Supported by programming languages

Cons:

Syntax is challenging for beginners

Requires knowledge of all the ways a
pattern may be mentioned in texts
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RegEx in Python
 

Python comes prepackaged with a RegEx library, re .

The first step in using re  package is to define a pattern .

The resulting pattern is used to find matching content.

 

import re 

pattern = r"((\d){3}-(\d){3}-(\d){4})" 
text = "Our phone number is 832-123-5555 and their phone number is 425-123-4567." 
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RegEx in Python
 

We use .finditer()  method from re  package

iter_matches = re.finditer(pattern, text) 
for match in iter_matches: 
    start_char = match.start() 
    end_char = match.end()  
    print ("Start character: ", start_char, "| End character: ", end_char,  
           "| Matching text: ", text[start_char:end_char]) 

>>> Start character:  20 | End character:  32 | Matching text:  832-123-5555 
Start character:  59 | End character:  71 | Matching text:  425-123-4567 
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RegEx in spaCy
RegEx in three pipeline components: Matcher , PhraseMatcher  and EntityRuler .

text = "Our phone number is 832-123-5555 and their phone number is 425-123-4567."  
nlp = spacy.blank("en") 
patterns = [{"label": "PHONE_NUMBER", "pattern": [{"SHAPE": "ddd"}, 
            {"ORTH": "-"}, {"SHAPE": "ddd"}, 
            {"ORTH": "-"}, {"SHAPE": "dddd"}]}]  
ruler = nlp.add_pipe("entity_ruler") 
ruler.add_patterns(patterns) 
doc = nlp(text) 
print ([(ent.text, ent.label_) for ent in doc.ents]) 

>>> [('832-123-5555', 'PHONE_NUMBER'), ('425-123-4567', 'PHONE_NUMBER')] 
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Matcher in spaCy
 

RegEx patterns can be complex, difficult to read and debug.

spaCy  provides a readable and production-level alternative, the Matcher  class.

 

import spacy 
from spacy.matcher import Matcher  
nlp = spacy.load("en_core_web_sm") 
doc = nlp("Good morning, this is our first day on campus.")  
matcher = Matcher(nlp.vocab) 
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Matcher in spaCy
 

Matching output include start and end token indices of the matched pattern.

pattern = [{"LOWER": "good"}, {"LOWER": "morning"}]  
matcher.add("morning_greeting", [pattern])  
matches = matcher(doc) 
for match_id, start, end in matches: 
    print("Start token: ", start, " | End token: ", end,  
          "| Matched text: ", doc[start:end].text) 

>>> Start token:  0  | End token:  2 | Matched text:  Good morning 



NATURAL LANGUAGE PROCESSING WITH SPACY

Matcher extended syntax support
 

Allows operators in defining the matching patterns.

Similar operators to Python's in , not in  and comparison operators

 

Attribute Value type Description

IN any type Attribute value is a member of a list

NOT_IN any type Attribute value is not a member of a list

== , >= , <= , > , < int, float Comparison operators for equality or inequality checks
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Matcher extended syntax support
Using IN  operator to match both good morning  and good evening

doc = nlp("Good morning and good evening.") 
matcher = Matcher(nlp.vocab) 
pattern = [{"LOWER": "good"}, {"LOWER": {"IN": ["morning", "evening"]}}] 
matcher.add("morning_greeting", [pattern]) 
matches = matcher(doc) 

The output of matching using IN  operator

for match_id, start, end in matches: 
    print("Start token: ", start, " | End token: ", end, 
          "| Matched text: ", doc[start:end].text) 

>>> Start token:  0  | End token:  2 | Matched text:  Good morning 
Start token:  3  | End token:  5 | Matched text:  good evening 
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PhraseMatcher in spaCy
 

PhraseMatcher  class matches a long list of phrases in a given text.

 

from spacy.matcher import PhraseMatcher 
nlp = spacy.load("en_core_web_sm") 
matcher = PhraseMatcher(nlp.vocab) 
terms = ["Bill Gates", "John Smith"] 
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PhraseMatcher in spaCy
PhraseMatcher outputs include start and end token indices of the matched pattern

patterns = [nlp.make_doc(term) for term in terms] 
matcher.add("PeopleOfInterest", patterns)  
doc = nlp("Bill Gates met John Smith for an important discussion regarding  
           importance of AI.")  
matches = matcher(doc) 
for match_id, start, end in matches: 
    print("Start token: ", start, " | End token: ", end,  
          "| Matched text: ", doc[start:end].text) 

>>> Start token:  0  | End token:  2 | Matched text:  Bill Gates 
Start token:  3  | End token:  5 | Matched text:  John Smith 
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PhraseMatcher in spaCy
We can use attr  argument of the PhraseMatcher  class

matcher = PhraseMatcher(nlp.vocab, attr = "LOWER") 
terms = ["Government", "Investment"] 
patterns = [nlp.make_doc(term) for term in terms] 
matcher.add("InvestmentTerms", patterns) 
doc = nlp("It was interesting to the investment division of the government.") 

matcher = PhraseMatcher(nlp.vocab, attr = "SHAPE") 
terms = ["110.0.0.0", "101.243.0.0"]
patterns = [nlp.make_doc(term) for term in terms] 
matcher.add("IPAddresses", patterns) 
doc = nlp("The tracked IP address was 234.135.0.0.") 
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