
Linguistic features
NATURAL LANGUAGE PROCESS ING WITH SPACY

Azadeh Mobasher
Principal Data Scientist

NATURAL LANGUAGE PROCESSING WITH SPACY

POS tagging
POS tags depend on the context, surrounding words and their tags

import spacy
nlp = spacy.load("en_core_web_sm")
text = "My cat will fish for a fish tomorrrow in a fishy way."
print([(token.text, token.pos_, spacy.explain(token.pos_))
 for token in nlp(text)])

NATURAL LANGUAGE PROCESSING WITH SPACY

What is the importance of POS?

Better accuracy for many NLP tasks

I will fish tomorrow.
I ate fish.

Translation system use case

verb -> pescaré
noun -> pescado

NATURAL LANGUAGE PROCESSING WITH SPACY

What is the importance of POS?

Word-sense disambiguation (WSD) is the problem of deciding in which sense a word is used
in a sentence.

Determining the sense of the word can be crucial in machine translation, etc.

NATURAL LANGUAGE PROCESSING WITH SPACY

Word-sense disambiguation
import spacy
nlp = spacy.load("en_core_web_sm")

verb_text = "I will fish tomorrow."
noun_text = "I ate fish."

print([(token.text, token.pos_) for token in nlp(verb_text) if "fish" in token.text], "\n")
print([(token.text, token.pos_) for token in nlp(noun_text) if "fish" in token.text])

[('fish', 'VERB', 'verb')]
[('fish', 'NOUN', 'noun')]

NATURAL LANGUAGE PROCESSING WITH SPACY

Dependency parsing
Explores a sentence syntax

Links between two tokens

Results in a tree

NATURAL LANGUAGE PROCESSING WITH SPACY

Dependency parsing and spaCy

Dependency label describes the type of syntactic relation between two tokens

Dependency label Description

nsubj Nominal subject

root Root

det Determiner

dobj Direct object

aux Auxiliary

NATURAL LANGUAGE PROCESSING WITH SPACY

Dependency parsing and displaCy
displaCy can draw dependency trees

doc = nlp("We understand the differences.")

spacy.displacy.serve(doc, style="dep")

NATURAL LANGUAGE PROCESSING WITH SPACY

Dependency parsing and spaCy
.dep_ attribute to access the dependency label of a token

doc = nlp("We understand the differences.")
print([(token.text, token.dep_, spacy.explain(token.dep_)) for token in doc])

[('We', 'nsubj', 'nominal subject'), ('understand', 'ROOT', 'root'),
('the', 'det', 'determiner'), ('differences', 'dobj', 'direct object'),
('.', 'punct', 'punctuation')]

Let's practice!
NATURAL LANGUAGE PROCESS ING WITH SPACY

Introduction to word
vectors

NATURAL LANGUAGE PROCESS ING WITH SPACY

Azadeh Mobasher
Principal Data Scientist

NATURAL LANGUAGE PROCESSING WITH SPACY

Word vectors (embeddings)

Numerical representations of words

Bag of words method: {"I": 1, "got": 2, ...}

Older methods do not allow to understand the meaning:

Sentences I got covid coronavirus

I got covid 1 2 3

I got coronavirus 1 2 4

NATURAL LANGUAGE PROCESSING WITH SPACY

Word vectors
A pre-defined number of dimensions

Considers word frequencies and the presence of other words in similar contexts

NATURAL LANGUAGE PROCESSING WITH SPACY

Word vectors
Multiple approaches to produce word vectors:

word2vec, Glove, fastText and transformer-based architectures

An example of a word vector:

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy vocabulary

A part of many spaCy models.

en_core_web_md has 300-dimensional vectors for 20,000 words.

import spacy
nlp = spacy.load("en_core_web_md")
print(nlp.meta["vectors"])

>>> {'width': 300, 'vectors': 20000, 'keys': 514157,
'name': 'en_vectors', 'mode': 'default'}

NATURAL LANGUAGE PROCESSING WITH SPACY

Word vectors in spaCy
nlp.vocab : to access vocabulary (Vocab class)

nlp.vocab.strings : to access word IDs in a vocabulary

import spacy
nlp = spacy.load("en_core_web_md")
like_id = nlp.vocab.strings["like"]
print(like_id)

>>> 18194338103975822726

.vocab.vectors : to access words vectors of a model or a word, given its corresponding ID

print(nlp.vocab.vectors[like_id])

>>> array([-2.3334e+00, -1.3695e+00, -1.1330e+00, -6.8461e-01, ...])

Let's practice!
NATURAL LANGUAGE PROCESS ING WITH SPACY

Word vectors and
spaCy

NATURAL LANGUAGE PROCESS ING WITH SPACY

Azadeh Mobasher
Principal Data Scientist

NATURAL LANGUAGE PROCESSING WITH SPACY

Word vectors visualization
Word vectors allow to understand how
words are grouped

Principal Component Analysis projects
word vectors into a two-dimensional space

NATURAL LANGUAGE PROCESSING WITH SPACY

Word vectors visualization
Import required libraries and a spaCy model.

import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
import numpy as np
nlp = spacy.load("en_core_web_md")

Extract word vectors for a given list of words and stack them vertically.

words = ["wonderful", "horrible",
 "apple", "banana", "orange", "watermelon",
 "dog", "cat"]
word_vectors = np.vstack([nlp.vocab.vectors[nlp.vocab.strings[w]] for w in words])

NATURAL LANGUAGE PROCESSING WITH SPACY

Word vectors visualizations
Extract two principal components using PCA.

pca = PCA(n_components=2)
word_vectors_transformed = pca.fit_transform(word_vectors)

Visualize the scatter plot of transformed vectors.

plt.figure(figsize=(10, 8))
plt.scatter(word_vectors_transformed[:, 0], word_vectors_transformed[:, 1])
for word, coord in zip(words, word_vectors_transformed):
 x, y = coord
 plt.text(x, y, word, size=10)
plt.show()

NATURAL LANGUAGE PROCESSING WITH SPACY

Analogies and vector operations
A semantic relationship between a pair of words.

Word embeddings generate analogies such as gender and tense:
queen - woman + man = king

NATURAL LANGUAGE PROCESSING WITH SPACY

Similar words in a vocabulary
spaCy find semantically similar terms to a given term

import numpy as np
import spacy
nlp = spacy.load("en_core_web_md")

word = "covid"
most_similar_words = nlp.vocab.vectors.most_similar(
 np.asarray([nlp.vocab.vectors[nlp.vocab.strings[word]]]), n=5)

words = [nlp.vocab.strings[w] for w in most_similar_words[0][0]]
print(words)

>>> ['Covi', 'CoVid', 'Covici', 'COVID-19', 'corona']

Let's practice!
NATURAL LANGUAGE PROCESS ING WITH SPACY

Measuring semantic
similarity with

spaCy
NATURAL LANGUAGE PROCESS ING WITH SPACY

Azadeh Mobasher
Principal Data Scientist

NATURAL LANGUAGE PROCESSING WITH SPACY

The semantic similarity method

Process of analyzing texts to identify similarities

Categorizes texts into predefined categories or detect relevant texts

Similarity score measures how similar two pieces of text are

What is the cheapest flight from Boston to Seattle?
Which airline serves Denver, Pittsburgh and Atlanta?
What kinds of planes are used by American Airlines?

NATURAL LANGUAGE PROCESSING WITH SPACY

Similarity score
A metric defined over texts

To measure similarity use Cosine similarity and word vectors

Cosine similarity is any number between 0 and 1

NATURAL LANGUAGE PROCESSING WITH SPACY

Token similarity
spaCy calculates similarity scores between Token objects

nlp = spacy.load("en_core_web_md")
doc1 = nlp("We eat pizza")
doc2 = nlp("We like to eat pasta")
token1 = doc1[2]
token2 = doc2[4]
print(f"Similarity between {token1} and {token2} = ", round(token1.similarity(token2), 3))

>>> Similarity between pizza and pasta = 0.685

NATURAL LANGUAGE PROCESSING WITH SPACY

Span similarity
spaCy calculates semantic similarity of two given Span objects

doc1 = nlp("We eat pizza")
doc2 = nlp("We like to eat pasta")

span1 = doc1[1:]
span2 = doc2[1:]
print(f"Similarity between \"{span1}\" and \"{span2}\" = ",
 round(span1.similarity(span2), 3))

>>> Similarity between "eat pizza" and "like to eat pasta" = 0.588

print(f"Similarity between \"{doc1[1:]}\" and \"{doc2[3:]}\" = ",
 round(doc1[1:].similarity(doc2[3:]), 3))

>>> Similarity between "eat pizza" and "eat pasta" = 0.936

NATURAL LANGUAGE PROCESSING WITH SPACY

Doc similarity
spaCy calculates the similarity scores between two documents

nlp = spacy.load("en_core_web_md")

doc1 = nlp("I like to play basketball")
doc2 = nlp("I love to play basketball")
print("Similarity score :", round(doc1.similarity(doc2), 3))

>>> Similarity score : 0.975

High cosine similarity shows highly semantically similar contents

Doc vectors default to an average of word vectors

NATURAL LANGUAGE PROCESSING WITH SPACY

Sentence similarity
spaCy finds relevant content to a given keyword

Finding similar customer questions to the word price:

sentences = nlp("What is the cheapest flight from Boston to Seattle?
 Which airline serves Denver, Pittsburgh and Atlanta?
 What kinds of planes are used by American Airlines?")

keyword = nlp("price")
for i, sentence in enumerate(sentences.sents):
 print(f"Similarity score with sentence {i+1}: ", round(sentence.similarity(keyword), 5))

>>> Similarity score with sentence 1: 0.26136
Similarity score with sentence 2: 0.14021
Similarity score with sentence 3: 0.13885

Let's practice!
NATURAL LANGUAGE PROCESS ING WITH SPACY

