
Natural Language
Processing (NLP)

basics
NATURAL LANGUAGE PROCESS ING WITH SPACY

Azadeh Mobasher
Principal Data Scientist

NATURAL LANGUAGE PROCESSING WITH SPACY

Natural Language Processing (NLP)

A subfield of Artificial Intelligence (AI)

Helps computers to understand human
language

Helps extract insights from unstructured
data

Incorporates statistics, machine learning
models and deep learning models

NATURAL LANGUAGE PROCESSING WITH SPACY

NLP use cases
Sentiment analysis

Use of computers to determine the underlying subjective tone of a piece of writing

NATURAL LANGUAGE PROCESSING WITH SPACY

NLP use cases
Named entity recognition (NER)

Locating and classifying named entities mentioned in unstructured text into pre-defined
categories

Named entities are real-world objects such as a person or location

NATURAL LANGUAGE PROCESSING WITH SPACY

NLP use cases

Generate human-like responses to text input, such as ChatGPT

NATURAL LANGUAGE PROCESSING WITH SPACY

Introduction to spaCy
spaCy is a free, open-source library for NLP in
Python which:

Is designed to build systems for information
extraction

Provides production-ready code for NLP
use cases

Supports 64+ languages

Is robust and fast and has visualization
libraries

NATURAL LANGUAGE PROCESSING WITH SPACY

Install and import spaCy

As the first step, spaCy can be installed
using the Python package manager pip

spaCy trained models can be downloaded

Multiple trained models are available for
English language at spacy.io

$ python3 pip install spacy

python3 -m spacy download en_core_web_sm
import spacy
nlp = spacy.load("en_core_web_sm")

https://spacy.io/

NATURAL LANGUAGE PROCESSING WITH SPACY

Read and process text with spaCy
Loaded spaCy model en_core_web_sm = nlp object

nlp object converts text into a Doc object (container) to store processed text

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy in action
Processing a string using spaCy

import spacy
nlp = spacy.load("en_core_web_sm")
text = "A spaCy pipeline object is created."
doc = nlp(text)

Tokenization
A Token is defined as the smallest meaningful part of the text.

Tokenization: The process of dividing a text into a list of meaningful tokens

print([token.text for token in doc])

['A', 'spaCy', 'pipeline', 'object', 'is', 'created', '.']

Let's practice!
NATURAL LANGUAGE PROCESS ING WITH SPACY

spaCy basics
NATURAL LANGUAGE PROCESS ING WITH SPACY

Azadeh Mobasher
Principal Data Scientist

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy NLP pipeline
import spacy
nlp = spacy.load("en_core_web_sm")
doc = nlp("Here's my spaCy pipeline.")

Import spaCy

Use spacy.load() to return nlp , a
Language class

The Language object is the text
processing pipeline

Apply nlp() on any text to get a Doc
container

NATURAL LANGUAGE PROCESSING WITH SPACY

spaCy NLP pipeline

spaCy applies some processing steps using its Language class:

NATURAL LANGUAGE PROCESSING WITH SPACY

Container objects in spaCy
There are multiple data structures to represent text data in spaCy :

Name Description

Doc A container for accessing linguistic annotations of text

Span A slice from a Doc object

Token An individual token, i.e. a word, punctuation, whitespace, etc.

NATURAL LANGUAGE PROCESSING WITH SPACY

Pipeline components
The spaCy language processing pipeline always depends on the loaded model and its
capabilities.

Component Name Description

Tokenizer Tokenizer Segment text into tokens and create Doc object

Tagger Tagger Assign part-of-speech tags

Lemmatizer Lemmatizer Reduce the words to their root forms

EntityRecognizer NER Detect and label named entities

NATURAL LANGUAGE PROCESSING WITH SPACY

Pipeline components

Each component has unique features to process text
Language

DependencyParser

Sentencizer

NATURAL LANGUAGE PROCESSING WITH SPACY

Tokenization
Always the first operation

All the other operations require tokens

Tokens can be words, numbers and punctuation

import spacy
nlp = spacy.load("en_core_web_sm")

doc = nlp("Tokenization splits a sentence into its tokens.")
print([token.text for token in doc])

['Tokenization', 'splits', 'a', 'sentence', 'into', 'its', 'tokens', '.']

NATURAL LANGUAGE PROCESSING WITH SPACY

Sentence segmentation
More complex than tokenization

Is a part of DependencyParser component

import spacy
nlp = spacy.load("en_core_web_sm")

text = "We are learning NLP. This course introduces spaCy."
doc = nlp(text)
for sent in doc.sents:
 print(sent.text)

We are learning NLP.
This course introduces spaCy.

NATURAL LANGUAGE PROCESSING WITH SPACY

Lemmatization
A lemma is a the base form of a token

The lemma of eats and ate is eat

Improves accuracy of language models

import spacy
nlp = spacy.load("en_core_web_sm")
doc = nlp("We are seeing her after one year.")
print([(token.text, token.lemma_) for token in doc])

[('We', 'we'), ('are', 'be'), ('seeing', 'see'), ('her', 'she'),
('after', 'after'), ('one', 'one'), ('year', 'year'), ('.', '.')]

Let's practice!
NATURAL LANGUAGE PROCESS ING WITH SPACY

Linguistic features in
spaCy

NATURAL LANGUAGE PROCESS ING WITH SPACY

Azadeh Mobasher
Principal Data Scientist

NATURAL LANGUAGE PROCESSING WITH SPACY

POS tagging
Categorizing words grammatically, based on function and context within a sentence

POS Description Example

VERB Verb run, eat, ate, take

NOUN Noun man, airplane, tree, flower

ADJ Adjective big, old, incompatible, conflicting

ADV Adverb very, down, there, tomorrow

CONJ Conjunction and, or, but

NATURAL LANGUAGE PROCESSING WITH SPACY

POS tagging with spaCy

POS tagging confirms the meaning of a word

Some words such as watch can be both noun and verb

spaCy captures POS tags in the pos_ feature of the nlp pipeline

spacy.explain() explains a given POS tag

NATURAL LANGUAGE PROCESSING WITH SPACY

POS tagging with spaCy
verb_sent = "I watch TV."

print([(token.text, token.pos_,
spacy.explain(token.pos_))
for token in nlp(verb_sent)])

[('I', 'PRON', 'pronoun'),
('watch', 'VERB', 'verb'),
('TV', 'NOUN', 'noun'),
('.', 'PUNCT', 'punctuation')]

noun_sent = "I left without my watch."

print([(token.text, token.pos_,
spacy.explain(token.pos_))
for token in nlp(noun_sent)])

[('I', 'PRON', 'pronoun'),
('left', 'VERB', 'verb'),
('without', 'ADP', 'adposition'),
('my', 'PRON', 'pronoun'),
('watch', 'NOUN', 'noun'),
('.', 'PUNCT', 'punctuation')]

NATURAL LANGUAGE PROCESSING WITH SPACY

Named entity recognition
A named entity is a word or phrase that refers to a specific entity with a name

Named-entity recognition (NER) classifies named entities into pre-defined categories

Entity type Description

PERSON Named person or family

ORG Companies, institutions, etc.

GPE Geo-political entity, countries, cities, etc.

LOC Non-GPE locations, mountain ranges, etc.

DATE Absolute or relative dates or periods

TIME Time smaller than a day

NATURAL LANGUAGE PROCESSING WITH SPACY

NER and spaCy

spaCy models extract named entities using the NER pipeline component

Named entities are available via the doc.ents property

spaCy will also tag each entity with its entity label (.label_)

NATURAL LANGUAGE PROCESSING WITH SPACY

NER and spaCy

import spacy
nlp = spacy.load("en_core_web_sm")
text = "Albert Einstein was genius."
doc = nlp(text)
print([(ent.text, ent.start_char,
ent.end_char, ent.label_) for ent in doc.ents])

>>> [('Albert Einstein', 0, 15, 'PERSON')]

NATURAL LANGUAGE PROCESSING WITH SPACY

NER and spaCy
We can also access entity types of each token in a Doc container

import spacy
nlp = spacy.load("en_core_web_sm")
text = "Albert Einstein was genius."
doc = nlp(text)
print([(token.text, token.ent_type_) for token in doc])

>>> [('Albert', 'PERSON'), ('Einstein', 'PERSON'),
('was', ''), ('genius', ''), ('.', '')]

NATURAL LANGUAGE PROCESSING WITH SPACY

displaCy

spaCy is equipped with a modern
visualizer: displaCy

The displaCy entity visualizer highlights
named entities and their labels

import spacy
from spacy import displacy

text = "Albert Einstein was genius."
nlp = spacy.load("en_core_web_sm")
doc = nlp(text)
displacy.serve(doc, style="ent")

Let's practice!
NATURAL LANGUAGE PROCESS ING WITH SPACY

