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Traditional train/test split
Seen data (used for training)

Unseen data (unavailable for training)
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Dataset definitions and ratios

Dataset De�nition

Train The sample of data used when ��ing models

Test (holdout sample) The sample of data used to assess model performance

Ratio Examples

80:20

90:10 (used when we have li�le data)

70:30 (used when model is computationally expensive)
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The X and y datasets

import pandas as pd 

tic_tac_toe = pd.read_csv("tic-tac-toe.csv") 
X = pd.get_dummies(tic_tac_toe.iloc[:,0:9]) 
y = tic_tac_toe.iloc[:, 9] 

Python courses covering dummy variables:

Supervised Learning

Preprocessing for Machine Learning

https://www.datacamp.com/courses/supervised-learning-with-scikit-learn
https://www.datacamp.com/courses/preprocessing-for-machine-learning-in-python
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Creating holdout samples

X_train, X_test, y_train, y_test  =\ 
    train_test_split(X, y, test_size=0.2, random_state=1111) 

Parameters:

test_size

train_size

random_state
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Dataset for preliminary testing?
What do we do when testing di�erent model parameters?

100 versus 1000 trees
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Train, validation, test continued

X_temp, X_test, y_temp, y_test  =\ 
    train_test_split(X, y, test_size=0.2, random_state=1111) 

X_train, X_val, y_train, y_val =\ 
    train_test_split(X_temp, y_temp, test_size=0.25, random_state=11111) 



It's holdout time
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Regression models
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Mean absolute error (MAE)
 

MAE =

Simplest and most intuitive metric

Treats all points equally

Not sensitive to outliers

n

∣y − ∣∑i=1
n

i ŷ i
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Mean squared error (MSE)
 

MSE =

Most widely used regression metric

Allows outlier errors to contribute more to the overall error

Random family road trips could lead to large errors in predictions

n

(y − )∑i=1
n
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MAE vs. MSE
Accuracy metrics are always application speci�c

MAE and MSE error terms are in di�erent units and should not be compared
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Mean absolute error

rfr = RandomForestRegressor(n_estimators=500, random_state=1111) 
rfr.fit(X_train, y_train) 
test_predictions = rfr.predict(X_test)  
sum(abs(y_test - test_predictions))/len(test_predictions) 

9.99 

from sklearn.metrics import mean_absolute_error 
mean_absolute_error(y_test, test_predictions) 

9.99 
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Mean squared error

sum(abs(y_test - test_predictions)**2)/len(test_predictions) 

141.4 

from sklearn.metrics import mean_squared_error 
mean_squared_error(y_test, test_predictions) 

141.4 
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Accuracy for a subset of data

chocolate_preds = rfr.predict(X_test[X_test[:, 1] == 1]) 
mean_absolute_error(y_test[X_test[:, 1] == 1], chocolate_preds) 

8.79 

nonchocolate_preds = rfr.predict(X_test[X_test[:, 1] == 0]) 
mean_absolute_error(y_test[X_test[:, 1] == 0], nonchocolate_preds) 

10.99 



Let's practice
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Classification metrics
Precision

Recall (also called sensitivity)

Accuracy

Speci�city

F1-Score, and its variations

...



MODEL VALIDATION IN PYTHON

Classification metrics
Precision

Recall (also called sensitivity)

Accuracy

Speci�city

F1-Score, and its variations

...
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Confusion matrix



MODEL VALIDATION IN PYTHON

from sklearn.metrics import confusion_matrix 
cm = confusion_matrix(y_test, test_predictions) 
print(cm) 

array([[ 23,  7], 
       [  8, 62]]) 

cm[<true_category_index>, <predicted_category_index>] 
cm[1, 0] 

8 
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Accuracy
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Precision
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Recall
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Accuracy, precision, recall

from sklearn.metrics import accuracy_score, precision_score, recall_score 
accuracy_score(y_test, test_predictions) 

.85 

precision_score(y_test, test_predictions) 

.8986 

recall_score(y_test, test_predictions) 

.8857 



Practice time
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Variance
Variance: following the training data too closely

Fails to generalize to the test data

Low training error but high testing error

Occurs when models are over�t and have high complexity
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Overfitting models (high variance)
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Bias
Bias: failing to �nd the relationship between the data and the response

High training/testing error

Occurs when models are under�t
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Underfitting models (high bias)
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Optimal performance

Bias-Variance Tradeo�

https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229
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Parameters causing over/under fitting

rfc = RandomForestClassifier(n_estimators=100, max_depth=4) 
rfc.fit(X_train, y_train)  

print("Training: {0:.2f}".format(accuracy_score(y_train, train_predictions))) 

Training: .84 

print("Testing: {0:.2f}".format(accuracy_score(y_test, test_predictions))) 

Testing: .77 
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rfc = RandomForestClassifier(n_estimators=100, max_depth=14) 
rfc.fit(X_train, y_train) 

print("Training: {0:.2f}".format(accuracy_score(y_train, train_predictions))) 

Training: 1.0 

print("Testing: {0:.2f}".format(accuracy_score(y_test, test_predictions))) 

Testing: .83 
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rfc = RandomForestClassifier(n_estimators=100, max_depth=10) 
rfc.fit(X_train, y_train) 

print("Training: {0:.2f}".format(accuracy_score(y_train, train_predictions))) 

Training: .89 

print("Testing: {0:.2f}".format(accuracy_score(y_test, test_predictions))) 

Testing: .86 



Remember, only you
can prevent
overfitting!
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