Creating train, test, and validation datasets

MODEL VALIDATION IN PYTHON

Kasey Jones Data Scientist

Traditional train/test split

- Seen data (used for training)
- Unseen data (unavailable for training)

MODEL VALIDATION IN PYTHON

(holdout sample)

Testing

Dataset definitions and ratios

Dataset	Definition
Train	The sample of data used when fitting models
Test (holdout sample)	The sample of data used to assess model perfo

Ratio Examples

- 80:20
- 90:10 (used when we have little data)
- 70:30 (used when model is computationally expensive)

The X and y datasets

```
import pandas as pd
```

```
tic_tac_toe = pd.read_csv("tic-tac-toe.csv")
```

- X = pd.get_dummies(tic_tac_toe.iloc[:,0:9])
- y = tic_tac_toe.iloc[:, 9]

Python courses covering dummy variables:

- Supervised Learning
- **Preprocessing for Machine Learning**

Creating holdout samples

X_train, X_test, y_train, y_test =\ train_test_split(X, y, test_size=0.2, random_state=1111)

Parameters:

- test_size
- train_size
- random_state

Dataset for preliminary testing?

What do we do when testing different model parameters?

• 100 *versus* 1000 trees

MODEL VALIDATION IN PYTHON

Testing

(testing

(holdout sample)

Testing

Train, validation, test continued

X_temp, X_test, y_temp, y_test =\ train_test_split(X, y, test_size=0.2, random_state=1111)

X_train, X_val, y_train, y_val = \langle train_test_split(X_temp, y_temp, test_size=0.25, random_state=11111)

It's holdout time

Accuracy metrics: regression models

MODEL VALIDATION IN PYTHON

Kasey Jones Data Scientist

datacamp

4,320 people

6 new puppies

\$1,323,492

12.2 points

15 gallons of gas

Regression models

Mean absolute error (MAE)

$$MAE = rac{\sum_{i=1}^n |y_i - \hat{y}_i|}{n}$$

- Simplest and most intuitive metric
- Treats all points equally
- Not sensitive to outliers

Mean squared error (MSE)

$$MSE = rac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n}$$

- Most widely used regression metric
- Allows outlier errors to contribute more to the overall error
- Random family road trips could lead to large errors in predictions

MAE vs. MSE

- Accuracy metrics are always application specific
- MAE and MSE error terms are in different units and should not be compared

Mean absolute error

rfr = RandomForestRegressor(n_estimators=500, random_state=1111) rfr.fit(X_train, y_train) test_predictions = rfr.predict(X_test) sum(abs(y_test - test_predictions))/len(test_predictions)

9.99

from sklearn.metrics import mean_absolute_error mean_absolute_error(y_test, test_predictions)

9.99

Mean squared error

sum(abs(y_test - test_predictions)**2)/len(test_predictions)

141.4

from sklearn.metrics import mean_squared_error mean_squared_error(y_test, test_predictions)

141.4

Accuracy for a subset of data

chocolate_preds = rfr.predict(X_test[X_test[:, 1] == 1]) mean_absolute_error(y_test[X_test[:, 1] == 1], chocolate_preds)

nonchocolate_preds = rfr.predict(X_test[X_test[:, 1] == 0]) mean_absolute_error(y_test[X_test[:, 1] == 0], nonchocolate_preds)

10.99

Let's practice MODEL VALIDATION IN PYTHON

Classification metrics

MODEL VALIDATION IN PYTHON

Kasey Jones Data Scientist

Classification metrics

- Precision
- Recall (also called sensitivity)
- Accuracy
- Specificity

...

• F1-Score, and its variations

Classification metrics

- Precision
- **Recall** (also called sensitivity)
- Accuracy
- Specificity

...

• F1-Score, and its variations

Confusion matrix

Predicted Values

Actual Values

	0	1	True Positive: Predict
0	23 (TN)	7 (FP)	True Negative: Predic
1	8 (FN)	62 (TP)	False Positive: Predict
I			

False Negative: Predicted 0, actual 1

Actual are both 1

t/Actual are both 0

ted 1, actual 0

from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_test, test_predictions) print(cm)

cm[<true_category_index>, <predicted_category_index>] cm[1, 0]

\mathbf{n}
\mathbf{X}
()
\sim

$\frac{23(TN)+62(TP)}{=.85}$ 23 + 7 + 8 + 62

datacamp

datacamp

MODEL VALIDATION IN PYTHON

.90

datacamp

MODEL VALIDATION IN PYTHON

= .885

Accuracy, precision, recall

Practice time

The bias-variance tradeoff

MODEL VALIDATION IN PYTHON

Kasey Jones Data Scientist

Variance

- Variance: following the training data too closely
 - Fails to generalize to the test data 0
 - Low training error but high testing error 0
 - Occurs when models are overfit and have high complexity 0

Overfitting models (high variance)

-Predictions • Actuals

Bias

- Bias: failing to find the relationship between the data and the response •
 - High training/testing error
 - Occurs when models are underfit 0

Underfitting models (high bias)

-Predictions • Actuals

0

Optimal performance

-Predictions Actuals

• Bias-Variance Tradeoff

Parameters causing over/under fitting

rfc = RandomForestClassifier(n_estimators=100, max_depth=4) rfc.fit(X_train, y_train)

print("Training: {0:.2f}".format(accuracy_score(y_train, train_predictions)))

Training: .84

print("Testing: {0:.2f}".format(accuracy_score(y_test, test_predictions)))

Testing: .77

rfc = RandomForestClassifier(n_estimators=100, max_depth=14) rfc.fit(X_train, y_train)

print("Training: {0:.2f}".format(accuracy_score(y_train, train_predictions)))

Training: 1.0

print("Testing: {0:.2f}".format(accuracy_score(y_test, test_predictions)))

Testing: .83

rfc = RandomForestClassifier(n_estimators=100, max_depth=10) rfc.fit(X_train, y_train)

print("Training: {0:.2f}".format(accuracy_score(y_train, train_predictions)))

Training: .89

print("Testing: {0:.2f}".format(accuracy_score(y_test, test_predictions)))

Testing: .86

Remember, only you can prevent overfitting!

