
Creating train, test,
and validation

datasets
MODEL VAL IDAT ION IN PYTHON

Kasey Jones

Data Scientist

MODEL VALIDATION IN PYTHON

Traditional train/test split
Seen data (used for training)

Unseen data (unavailable for training)

MODEL VALIDATION IN PYTHON

Dataset definitions and ratios

Dataset De�nition

Train The sample of data used when ��ing models

Test (holdout sample) The sample of data used to assess model performance

Ratio Examples

80:20

90:10 (used when we have li�le data)

70:30 (used when model is computationally expensive)

MODEL VALIDATION IN PYTHON

The X and y datasets

import pandas as pd

tic_tac_toe = pd.read_csv("tic-tac-toe.csv")
X = pd.get_dummies(tic_tac_toe.iloc[:,0:9])
y = tic_tac_toe.iloc[:, 9]

Python courses covering dummy variables:

Supervised Learning

Preprocessing for Machine Learning

https://www.datacamp.com/courses/supervised-learning-with-scikit-learn
https://www.datacamp.com/courses/preprocessing-for-machine-learning-in-python

MODEL VALIDATION IN PYTHON

Creating holdout samples

X_train, X_test, y_train, y_test =\
 train_test_split(X, y, test_size=0.2, random_state=1111)

Parameters:

test_size

train_size

random_state

MODEL VALIDATION IN PYTHON

Dataset for preliminary testing?
What do we do when testing di�erent model parameters?

100 versus 1000 trees

MODEL VALIDATION IN PYTHON

MODEL VALIDATION IN PYTHON

Train, validation, test continued

X_temp, X_test, y_temp, y_test =\
 train_test_split(X, y, test_size=0.2, random_state=1111)

X_train, X_val, y_train, y_val =\
 train_test_split(X_temp, y_temp, test_size=0.25, random_state=11111)

It's holdout time
MODEL VAL IDAT ION IN PYTHON

Accuracy metrics:
regression models

MODEL VAL IDAT ION IN PYTHON

Kasey Jones

Data Scientist

MODEL VALIDATION IN PYTHON

Regression models

MODEL VALIDATION IN PYTHON

Mean absolute error (MAE)

MAE =

Simplest and most intuitive metric

Treats all points equally

Not sensitive to outliers

n

∣y − ∣∑i=1
n

i ŷ i

MODEL VALIDATION IN PYTHON

Mean squared error (MSE)

MSE =

Most widely used regression metric

Allows outlier errors to contribute more to the overall error

Random family road trips could lead to large errors in predictions

n

(y −)∑i=1
n

i ŷ i
2

MODEL VALIDATION IN PYTHON

MAE vs. MSE
Accuracy metrics are always application speci�c

MAE and MSE error terms are in di�erent units and should not be compared

MODEL VALIDATION IN PYTHON

Mean absolute error

rfr = RandomForestRegressor(n_estimators=500, random_state=1111)
rfr.fit(X_train, y_train)
test_predictions = rfr.predict(X_test)
sum(abs(y_test - test_predictions))/len(test_predictions)

9.99

from sklearn.metrics import mean_absolute_error
mean_absolute_error(y_test, test_predictions)

9.99

MODEL VALIDATION IN PYTHON

Mean squared error

sum(abs(y_test - test_predictions)**2)/len(test_predictions)

141.4

from sklearn.metrics import mean_squared_error
mean_squared_error(y_test, test_predictions)

141.4

MODEL VALIDATION IN PYTHON

Accuracy for a subset of data

chocolate_preds = rfr.predict(X_test[X_test[:, 1] == 1])
mean_absolute_error(y_test[X_test[:, 1] == 1], chocolate_preds)

8.79

nonchocolate_preds = rfr.predict(X_test[X_test[:, 1] == 0])
mean_absolute_error(y_test[X_test[:, 1] == 0], nonchocolate_preds)

10.99

Let's practice
MODEL VAL IDAT ION IN PYTHON

Classification
metrics

MODEL VAL IDAT ION IN PYTHON

Kasey Jones

Data Scientist

MODEL VALIDATION IN PYTHON

Classification metrics
Precision

Recall (also called sensitivity)

Accuracy

Speci�city

F1-Score, and its variations

...

MODEL VALIDATION IN PYTHON

Classification metrics
Precision

Recall (also called sensitivity)

Accuracy

Speci�city

F1-Score, and its variations

...

MODEL VALIDATION IN PYTHON

Confusion matrix

MODEL VALIDATION IN PYTHON

from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, test_predictions)
print(cm)

array([[23, 7],
 [8, 62]])

cm[<true_category_index>, <predicted_category_index>]
cm[1, 0]

8

MODEL VALIDATION IN PYTHON

Accuracy

MODEL VALIDATION IN PYTHON

Precision

MODEL VALIDATION IN PYTHON

Recall

MODEL VALIDATION IN PYTHON

Accuracy, precision, recall

from sklearn.metrics import accuracy_score, precision_score, recall_score
accuracy_score(y_test, test_predictions)

.85

precision_score(y_test, test_predictions)

.8986

recall_score(y_test, test_predictions)

.8857

Practice time
MODEL VAL IDAT ION IN PYTHON

The bias-variance
tradeoff

MODEL VAL IDAT ION IN PYTHON

Kasey Jones

Data Scientist

MODEL VALIDATION IN PYTHON

Variance
Variance: following the training data too closely

Fails to generalize to the test data

Low training error but high testing error

Occurs when models are over�t and have high complexity

MODEL VALIDATION IN PYTHON

Overfitting models (high variance)

MODEL VALIDATION IN PYTHON

Bias
Bias: failing to �nd the relationship between the data and the response

High training/testing error

Occurs when models are under�t

MODEL VALIDATION IN PYTHON

Underfitting models (high bias)

MODEL VALIDATION IN PYTHON

Optimal performance

Bias-Variance Tradeo�

https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229

MODEL VALIDATION IN PYTHON

Parameters causing over/under fitting

rfc = RandomForestClassifier(n_estimators=100, max_depth=4)
rfc.fit(X_train, y_train)

print("Training: {0:.2f}".format(accuracy_score(y_train, train_predictions)))

Training: .84

print("Testing: {0:.2f}".format(accuracy_score(y_test, test_predictions)))

Testing: .77

MODEL VALIDATION IN PYTHON

rfc = RandomForestClassifier(n_estimators=100, max_depth=14)
rfc.fit(X_train, y_train)

print("Training: {0:.2f}".format(accuracy_score(y_train, train_predictions)))

Training: 1.0

print("Testing: {0:.2f}".format(accuracy_score(y_test, test_predictions)))

Testing: .83

MODEL VALIDATION IN PYTHON

rfc = RandomForestClassifier(n_estimators=100, max_depth=10)
rfc.fit(X_train, y_train)

print("Training: {0:.2f}".format(accuracy_score(y_train, train_predictions)))

Training: .89

print("Testing: {0:.2f}".format(accuracy_score(y_test, test_predictions)))

Testing: .86

Remember, only you
can prevent
overfitting!

MODEL VAL IDAT ION IN PYTHON

