Tuning a CART's
hyperparameters

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Elie Kawerk
Data Scientist

Hyperparameters

Machine learning model:

e parameters: learned from data
o CART example: split-point of a node, split-feature of a node, ...

 hyperparameters: not learned from data, set prior to training
o CART example: max_depth , min_samples_leaf , splitting criterion ...

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

What is hyperparameter tuning?

 Problem: search for a set of optimal hyperparameters for a learning algorithm.

e Solution: find a set of optimal hyperparameters that results in an optimal model.
e Optimal model: yields an optimal score.

e Score: in sklearn defaults to accuracy (classification) and R? (regression).

e Cross validation is used to estimate the generalization performance.

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Why tune hyperparameters?

 In sklearn, a model's default hyperparameters are not optimal for all problems.

e Hyperparameters should be tuned to obtain the best model performance.

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Approaches to hyperparameter tuning
e Grid Search

Random Search
Bayesian Optimization

Genetic Algorithms

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Grid search cross validation

e Manually set a grid of discrete hyperparameter values.

e Set a metric for scoring model performance.

e Search exhaustively through the grid.

e For each set of hyperparameters, evaluate each model's CV score.

e The optimal hyperparameters are those of the model achieving the best CV score.

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Grid search cross validation: example

e Hyperparameters grids:
o max_depth ={2,3,4},

o min_samples_leaf ={0.05, 0.1}
e hyperparameter space = {(2,0.05), (2,0.1), (3,0.05), ... }
e CVscores ={ score(,.05) » - }

e optimal hyperparameters = set of hyperparameters corresponding to the best CV score.

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Inspecting the hyperparameters of a CART in sklearn

Import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier

Set seed to 1 for reproducibility
SEED = 1

Instantiate a DecisionTreeClassifier 'dt'
dt = DecisionTreeClassifier(random_state=SEED)

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Inspecting the hyperparameters of a CART in sklearn

Print out 'dt's hyperparameters {'class_weight': None,

print(dt.get_params()) 'criterion': 'gini',
'max_depth': None,
'max_features': None,
'max_Lleaf_nodes': None,
'min_impurity_decrease': 0.0,

'min_impurity_split': None,

'min_samples_leaf': 1,
'min_samples_split': 2,
'min_weight_fraction_leaf': 0.0,
'presort': False,
'random_state': 1,

'splitter': 'best'}

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Import GridSearchCV
from sklearn.model_selection import GridSearchCV
Define the grid of hyperparameters 'params_dt'
params_dt = {
'max_depth': [3, 4,5, 6],
'min_samples_leaf': [0.04, 0.06, 0.08],
'max_features': [0.2, 0.4,0.6, 0.8]
}
Instantiate a 10-fold CV grid search object 'grid_dt'
grid_dt = GridSearchCV(estimator=dt,
param_grid=params_dt,
scoring="accuracy',
cv=10,
n_jobs=-1)
Fit 'grid_dt' to the training data
grid_dt.fit(X_train, y_train)

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Extracting the best hyperparameters

Extract best hyperparameters from 'grid_dt'
best_hyperparams = grid_dt.best_params_
print('Best hyerparameters:\n', best_hyperparams)

Best hyerparameters:

{'max_depth': 3, 'max_features': 0.4, 'min_samples_leaf': 0.06}

Extract best CV score from 'grid_dt'
best_CV_score = grid_dt.best_score_
print('Best CV accuracy'.format(best_CV_score))

Best CV accuracy: 0.938

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Extracting the best estimator

Extract best model from 'grid_dt'
best_model = grid_dt.best_estimator_

Evaluate test set accuracy

test_acc = best_model.score(X_test,y_test)

Print test set accuracy
print("Test set accuracy of best model: {:.3f}".format(test_acc))

Test set accuracy of best model: 0.947

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Let's practice!

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Tuning an RF's
Hyperparameters

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Elie Kawerk
Data Scientist

Random Forests Hyperparameters
e CART hyperparameters

e number of estimators

e bootstrap

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Tuning is expensive

Hyperparameter tuning:

e computationally expensive,
e sometimes leads to very slight improvement,

Weight the impact of tuning on the whole project.

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Inspecting RF Hyperparameters in sklearn

Import RandomForestRegressor
from sklearn.ensemble import RandomForestRegressor

Set seed for reproducilbility
SEED = 1

Instantiate a random forests regressor 'rf'
rf = RandomForestRegressor(random_state= SEED)

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Inspect rf' s hyperparameters {'bootstrap': True,

rf.get_params() 'criterion': 'mse',
'max_depth': None,
'max_features': 'auto',
'max_leaf_nodes': None,
'min_impurity_decrease': 0.0,
'min_impurity_split': None,
'min_samples_leaf': 1,

'min_samples_split': 2,

'min_welght_fraction_leaf': 0.0,
'n_estimators': 10,

'n_jobs': -1,

'oob_score': False,
'random_state': 1,

'verbose': 0,

'warm_start': False}

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Basic imports
from sklearn.metrics import mean_squared_error as MSE
from sklearn.model_selection import GridSearchCV
Define a grid of hyperparameter 'params_rf'
params_rf = {
'n_estimators': [300, 400, 500],
'max_depth': [4, 6, 8],
'min_samples_leaf': [0.1, 0.2],
'max_features': ['log2', 'sqrt']
1
Instantiate 'grid_rf'
grid_rf = GridSearchCV(estimator=rf,
param_grid=params_rf,
cv=3,
scoring="'neg_mean_squared_error',
verbose=1,
n_jobs=-1)

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Searching for the best hyperparameters

Fit 'grid_rf' to the trailning set
grid_rf.fit(X_train, y_train)

Fitting 3 folds for each of 36 candidates, totalling 108 fits
[Parallel(n_jobs=-1)]: Done 42 tasks | elapsed: 10.0s
[Parallel(n_jobs=-1)]: Done 108 out of 108 | elapsed: 24.3s finished
RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=4,

max_features='10g2', max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=0.1, min_samples_split=2,
min_welght_fraction_leaf=0.0, n_estimators=400, n_jobs=1,
oob_score=False, random_state=1, verbose=0, warm_start=False)

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Extracting the best hyperparameters

Extract the best hyperparameters from 'grid_rf'
best_hyperparams = grid_rf.best_params_

print('Best hyperparameters:\n', best_hyperparams)

Best hyperparameters:
{'max_depth': 4,

'max_features': 'log?2',
'min_samples_leaf': 0.1,
'n_estimators': 400}

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Evaluating the best model performance

Extract the best model from 'grid_rf'

best_model = grid_rf.best_estimator_

Predict the test set labels

y_pred = best_model.predict(X_test)

Evaluate the test set RMSE

rmse_test = MSE(y_test, y_pred)*x(1/2)

Print the test set RMSE

print('Test set RMSE of rf: {:.2f}'.format(rmse_test))

Test set RMSE of rf: 3.89

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Let's practice!

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Congratulations!

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Elie Kawerk
Data Scientist

How far you have come

Chapter 1: Decision-Tree Learning

Chapter 5: Model Tuning

Chapter 2: Generalization Error, Cross-Validation, Ensembling
Chapter 3: Bagging and Random Forests
Chapter 4: AdaBoost and Gradient-Boosting

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Thank you!

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

