
Tuning a CART's
hyperparameters

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Elie Kawerk
Data Scientist

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Hyperparameters
Machine learning model:

parameters: learned from data
CART example: split-point of a node, split-feature of a node, ...

hyperparameters: not learned from data, set prior to training
CART example: max_depth , min_samples_leaf , splitting criterion ...

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

What is hyperparameter tuning?
Problem: search for a set of optimal hyperparameters for a learning algorithm.

Solution: find a set of optimal hyperparameters that results in an optimal model.

Optimal model: yields an optimal score.

Score: in sklearn defaults to accuracy (classification) and R (regression).

Cross validation is used to estimate the generalization performance.

2

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Why tune hyperparameters?
In sklearn , a model's default hyperparameters are not optimal for all problems.

Hyperparameters should be tuned to obtain the best model performance.

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Approaches to hyperparameter tuning
Grid Search

Random Search

Bayesian Optimization

Genetic Algorithms

....

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Grid search cross validation
Manually set a grid of discrete hyperparameter values.

Set a metric for scoring model performance.

Search exhaustively through the grid.

For each set of hyperparameters, evaluate each model's CV score.

The optimal hyperparameters are those of the model achieving the best CV score.

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Grid search cross validation: example
Hyperparameters grids:

max_depth = {2,3,4},

min_samples_leaf = {0.05, 0.1}

hyperparameter space = { (2,0.05) , (2,0.1) , (3,0.05), ... }

CV scores = { score , ... }

optimal hyperparameters = set of hyperparameters corresponding to the best CV score.

(2,0.05)

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Inspecting the hyperparameters of a CART in sklearn
Import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier

Set seed to 1 for reproducibility
SEED = 1

Instantiate a DecisionTreeClassifier 'dt'
dt = DecisionTreeClassifier(random_state=SEED)

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Inspecting the hyperparameters of a CART in sklearn
Print out 'dt's hyperparameters
print(dt.get_params())

 {'class_weight': None,
 'criterion': 'gini',
 'max_depth': None,
 'max_features': None,
 'max_leaf_nodes': None,
 'min_impurity_decrease': 0.0,
 'min_impurity_split': None,
 'min_samples_leaf': 1,
 'min_samples_split': 2,
 'min_weight_fraction_leaf': 0.0,
 'presort': False,
 'random_state': 1,
 'splitter': 'best'}

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Import GridSearchCV
from sklearn.model_selection import GridSearchCV
Define the grid of hyperparameters 'params_dt'
params_dt = {
 'max_depth': [3, 4,5, 6],
 'min_samples_leaf': [0.04, 0.06, 0.08],
 'max_features': [0.2, 0.4,0.6, 0.8]
 }
Instantiate a 10-fold CV grid search object 'grid_dt'
grid_dt = GridSearchCV(estimator=dt,
 param_grid=params_dt,
 scoring='accuracy',
 cv=10,
 n_jobs=-1)
Fit 'grid_dt' to the training data
grid_dt.fit(X_train, y_train)

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Extracting the best hyperparameters
Extract best hyperparameters from 'grid_dt'
best_hyperparams = grid_dt.best_params_
print('Best hyerparameters:\n', best_hyperparams)

Best hyerparameters:
 {'max_depth': 3, 'max_features': 0.4, 'min_samples_leaf': 0.06}

Extract best CV score from 'grid_dt'
best_CV_score = grid_dt.best_score_
print('Best CV accuracy'.format(best_CV_score))

Best CV accuracy: 0.938

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Extracting the best estimator
Extract best model from 'grid_dt'
best_model = grid_dt.best_estimator_

Evaluate test set accuracy
test_acc = best_model.score(X_test,y_test)

Print test set accuracy
print("Test set accuracy of best model: {:.3f}".format(test_acc))

Test set accuracy of best model: 0.947

Let's practice!
MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Tuning an RF's
Hyperparameters

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Elie Kawerk
Data Scientist

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Random Forests Hyperparameters
CART hyperparameters

number of estimators

bootstrap

....

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Tuning is expensive
Hyperparameter tuning:

computationally expensive,

sometimes leads to very slight improvement,

Weight the impact of tuning on the whole project.

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Inspecting RF Hyperparameters in sklearn
Import RandomForestRegressor
from sklearn.ensemble import RandomForestRegressor

Set seed for reproducibility
SEED = 1

Instantiate a random forests regressor 'rf'
rf = RandomForestRegressor(random_state= SEED)

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Inspect rf' s hyperparameters
rf.get_params()

{'bootstrap': True,
 'criterion': 'mse',
 'max_depth': None,
 'max_features': 'auto',
 'max_leaf_nodes': None,
 'min_impurity_decrease': 0.0,
 'min_impurity_split': None,
 'min_samples_leaf': 1,
 'min_samples_split': 2,
 'min_weight_fraction_leaf': 0.0,
 'n_estimators': 10,
 'n_jobs': -1,
 'oob_score': False,
 'random_state': 1,
 'verbose': 0,
 'warm_start': False}

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Basic imports
from sklearn.metrics import mean_squared_error as MSE
from sklearn.model_selection import GridSearchCV
Define a grid of hyperparameter 'params_rf'
params_rf = {
 'n_estimators': [300, 400, 500],
 'max_depth': [4, 6, 8],
 'min_samples_leaf': [0.1, 0.2],
 'max_features': ['log2', 'sqrt']
 }
Instantiate 'grid_rf'
grid_rf = GridSearchCV(estimator=rf,
 param_grid=params_rf,
 cv=3,
 scoring='neg_mean_squared_error',
 verbose=1,
 n_jobs=-1)

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Searching for the best hyperparameters
Fit 'grid_rf' to the training set
grid_rf.fit(X_train, y_train)

Fitting 3 folds for each of 36 candidates, totalling 108 fits
[Parallel(n_jobs=-1)]: Done 42 tasks | elapsed: 10.0s
[Parallel(n_jobs=-1)]: Done 108 out of 108 | elapsed: 24.3s finished
RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=4,
 max_features='log2', max_leaf_nodes=None,
 min_impurity_decrease=0.0, min_impurity_split=None,
 min_samples_leaf=0.1, min_samples_split=2,
 min_weight_fraction_leaf=0.0, n_estimators=400, n_jobs=1,
 oob_score=False, random_state=1, verbose=0, warm_start=False)

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Extracting the best hyperparameters
Extract the best hyperparameters from 'grid_rf'
best_hyperparams = grid_rf.best_params_

print('Best hyperparameters:\n', best_hyperparams)

Best hyperparameters:
 {'max_depth': 4,
 'max_features': 'log2',
 'min_samples_leaf': 0.1,
 'n_estimators': 400}

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Evaluating the best model performance
Extract the best model from 'grid_rf'
best_model = grid_rf.best_estimator_
Predict the test set labels
y_pred = best_model.predict(X_test)
Evaluate the test set RMSE
rmse_test = MSE(y_test, y_pred)**(1/2)
Print the test set RMSE
print('Test set RMSE of rf: {:.2f}'.format(rmse_test))

Test set RMSE of rf: 3.89

Let's practice!
MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Congratulations!
MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Elie Kawerk
Data Scientist

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

How far you have come
Chapter 1: Decision-Tree Learning

Chapter 2: Generalization Error, Cross-Validation, Ensembling

Chapter 3: Bagging and Random Forests

Chapter 4: AdaBoost and Gradient-Boosting

Chapter 5: Model Tuning

Thank you!
MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

