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Hyperparameters
Machine learning model:

parameters: learned from data
CART example: split-point of a node, split-feature of a node, ...

hyperparameters: not learned from data, set prior to training
CART example: max_depth , min_samples_leaf , splitting criterion ...
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What is hyperparameter tuning?
Problem: search for a set of optimal hyperparameters for a learning algorithm.

Solution: find a set of optimal hyperparameters that results in an optimal model.

Optimal model: yields an optimal score.

Score: in sklearn defaults to accuracy (classification) and R  (regression).

Cross validation is used to estimate the generalization performance.
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Why tune hyperparameters?
In sklearn , a model's default hyperparameters are not optimal for all problems.

Hyperparameters should be tuned to obtain the best model performance.
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Approaches to hyperparameter tuning
Grid Search

Random Search

Bayesian Optimization

Genetic Algorithms

....
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Grid search cross validation
Manually set a grid of discrete hyperparameter values.

Set a metric for scoring model performance.

Search exhaustively through the grid.

For each set of hyperparameters, evaluate each model's CV score.

The optimal hyperparameters are those of the model achieving the best CV score.
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Grid search cross validation: example
Hyperparameters grids:

max_depth  = {2,3,4},

min_samples_leaf  = {0.05, 0.1}

hyperparameter space = { (2,0.05) , (2,0.1) , (3,0.05), ... }

CV scores = { score  , ... }

optimal hyperparameters = set of hyperparameters corresponding to the best CV score.

(2,0.05)
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Inspecting the hyperparameters of a CART in sklearn
# Import DecisionTreeClassifier 
from sklearn.tree import DecisionTreeClassifier 

# Set seed to 1 for reproducibility 
SEED = 1 

# Instantiate a DecisionTreeClassifier 'dt' 
dt = DecisionTreeClassifier(random_state=SEED) 
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Inspecting the hyperparameters of a CART in sklearn
# Print out 'dt's hyperparameters 
print(dt.get_params()) 

        {'class_weight': None, 
         'criterion': 'gini', 
         'max_depth': None, 
         'max_features': None, 
         'max_leaf_nodes': None, 
         'min_impurity_decrease': 0.0, 
         'min_impurity_split': None, 
         'min_samples_leaf': 1, 
         'min_samples_split': 2, 
         'min_weight_fraction_leaf': 0.0, 
         'presort': False, 
         'random_state': 1, 
         'splitter': 'best'} 
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# Import GridSearchCV 
from sklearn.model_selection import GridSearchCV  
# Define the grid of hyperparameters 'params_dt' 
params_dt = { 
             'max_depth': [3, 4,5, 6], 
             'min_samples_leaf': [0.04, 0.06, 0.08], 
             'max_features': [0.2, 0.4,0.6, 0.8] 
            }  
# Instantiate a 10-fold CV grid search object 'grid_dt' 
grid_dt = GridSearchCV(estimator=dt,  
                       param_grid=params_dt, 
                       scoring='accuracy',                        
                       cv=10, 
                       n_jobs=-1)  
# Fit 'grid_dt' to the training data 
grid_dt.fit(X_train, y_train) 
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Extracting the best hyperparameters
# Extract best hyperparameters from 'grid_dt' 
best_hyperparams = grid_dt.best_params_ 
print('Best hyerparameters:\n', best_hyperparams) 

Best hyerparameters: 
  {'max_depth': 3, 'max_features': 0.4, 'min_samples_leaf': 0.06} 

# Extract best CV score from 'grid_dt' 
best_CV_score = grid_dt.best_score_ 
print('Best CV accuracy'.format(best_CV_score)) 

Best CV accuracy: 0.938 
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Extracting the best estimator
# Extract best model from 'grid_dt' 
best_model = grid_dt.best_estimator_  

# Evaluate test set accuracy 
test_acc = best_model.score(X_test,y_test) 

# Print test set accuracy 
print("Test set accuracy of best model: {:.3f}".format(test_acc)) 

Test set accuracy of best model: 0.947 
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Random Forests Hyperparameters
CART hyperparameters

number of estimators

bootstrap

....
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Tuning is expensive
Hyperparameter tuning:

computationally expensive,

sometimes leads to very slight improvement,

Weight the impact of tuning on the whole project.
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Inspecting RF Hyperparameters in sklearn
# Import RandomForestRegressor  
from sklearn.ensemble import RandomForestRegressor 

# Set seed for reproducibility 
SEED = 1 

# Instantiate a random forests regressor 'rf'  
rf = RandomForestRegressor(random_state= SEED) 
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# Inspect rf' s hyperparameters 
rf.get_params() 

{'bootstrap': True, 
 'criterion': 'mse', 
 'max_depth': None, 
 'max_features': 'auto', 
 'max_leaf_nodes': None, 
 'min_impurity_decrease': 0.0, 
 'min_impurity_split': None, 
 'min_samples_leaf': 1, 
 'min_samples_split': 2, 
 'min_weight_fraction_leaf': 0.0, 
 'n_estimators': 10, 
 'n_jobs': -1, 
 'oob_score': False, 
 'random_state': 1, 
 'verbose': 0, 
 'warm_start': False} 
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# Basic imports 
from sklearn.metrics import mean_squared_error as MSE 
from sklearn.model_selection import GridSearchCV  
# Define a grid of hyperparameter 'params_rf' 
params_rf = { 
              'n_estimators': [300, 400, 500], 
              'max_depth': [4, 6, 8], 
              'min_samples_leaf': [0.1, 0.2], 
              'max_features': ['log2', 'sqrt'] 
             }  
# Instantiate 'grid_rf' 
grid_rf = GridSearchCV(estimator=rf, 
                       param_grid=params_rf,  
                       cv=3, 
                       scoring='neg_mean_squared_error', 
                       verbose=1, 
                       n_jobs=-1) 
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Searching for the best hyperparameters
# Fit 'grid_rf' to the training set 
grid_rf.fit(X_train, y_train) 

Fitting 3 folds for each of 36 candidates, totalling 108 fits 
[Parallel(n_jobs=-1)]: Done  42 tasks      | elapsed:   10.0s 
[Parallel(n_jobs=-1)]: Done 108 out of 108 | elapsed:   24.3s finished 
RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=4, 
           max_features='log2', max_leaf_nodes=None, 
           min_impurity_decrease=0.0, min_impurity_split=None, 
           min_samples_leaf=0.1, min_samples_split=2, 
           min_weight_fraction_leaf=0.0, n_estimators=400, n_jobs=1, 
           oob_score=False, random_state=1, verbose=0, warm_start=False) 
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Extracting the best hyperparameters
# Extract the best hyperparameters from 'grid_rf' 
best_hyperparams = grid_rf.best_params_ 

print('Best hyperparameters:\n', best_hyperparams) 

Best hyperparameters: 
        {'max_depth': 4, 
         'max_features': 'log2',  
         'min_samples_leaf': 0.1, 
         'n_estimators': 400} 
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Evaluating the best model performance
# Extract the best model from 'grid_rf' 
best_model = grid_rf.best_estimator_ 
# Predict the test set labels 
y_pred = best_model.predict(X_test) 
# Evaluate the test set RMSE 
rmse_test = MSE(y_test, y_pred)**(1/2) 
# Print the test set RMSE 
print('Test set RMSE of rf: {:.2f}'.format(rmse_test)) 

Test set RMSE of rf: 3.89 



Let's practice!
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How far you have come
Chapter 1: Decision-Tree Learning

Chapter 2: Generalization Error, Cross-Validation, Ensembling

Chapter 3: Bagging and Random Forests

Chapter 4: AdaBoost and Gradient-Boosting

Chapter 5: Model Tuning
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