Tuning a CART's hyperparameters

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Elie Kawerk Data Scientist

Hyperparameters

Machine learning model:

- parameters: learned from data
 - CART example: split-point of a node, split-feature of a node, ... 0
- hyperparameters: not learned from data, set prior to training
 - CART example: max_depth , min_samples_leaf , splitting criterion ... 0

What is hyperparameter tuning?

- **Problem:** search for a set of optimal hyperparameters for a learning algorithm.
- **Solution**: find a set of optimal hyperparameters that results in an optimal model.
- **Optimal model:** yields an optimal score.
- Score: in sklearn defaults to accuracy (classification) and R^2 (regression).
- Cross validation is used to estimate the generalization performance.

Why tune hyperparameters?

- In sklearn, a model's default hyperparameters are not optimal for all problems. \bullet
- Hyperparameters should be tuned to obtain the best model performance.

Approaches to hyperparameter tuning

- Grid Search
- Random Search
- Bayesian Optimization
- Genetic Algorithms

Grid search cross validation

- Manually set a grid of discrete hyperparameter values.
- Set a metric for scoring model performance.
- Search exhaustively through the grid.
- For each set of hyperparameters, evaluate each model's CV score.
- The optimal hyperparameters are those of the model achieving the best CV score.

Grid search cross validation: example

- Hyperparameters grids:
 - $max_depth = \{2, 3, 4\},\$ 0
 - $min_samples_leaf = \{0.05, 0.1\}$ 0
- hyperparameter space = $\{(2,0.05), (2,0.1), (3,0.05), ...\}$
- CV scores = { $score_{(2,0.05)}$, ... }
- optimal hyperparameters = set of hyperparameters corresponding to the best CV score.

Inspecting the hyperparameters of a CART in sklearn

Import DecisionTreeClassifier
from sklearn.tree import DecisionTreeClassifier

```
# Set seed to 1 for reproducibility
SEED = 1
```

Instantiate a DecisionTreeClassifier 'dt'

dt = DecisionTreeClassifier(random_state=SEED)

Inspecting the hyperparameters of a CART in sklearn

Print out 'dt's hyperparameters print(dt.get_params())

{'class_weight': None, 'criterion': 'gini', 'max_depth': None, 'max_features': None, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_impurity_split': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'presort': False, 'random_state': 1, 'splitter': 'best'}


```
'min_weight_fraction_leaf': 0.0,
```

```
# Import GridSearchCV
from sklearn.model_selection import GridSearchCV
# Define the grid of hyperparameters 'params_dt'
params_dt = {
             'max_depth': [3, 4,5, 6],
             'min_samples_leaf': [0.04, 0.06, 0.08],
             'max_features': [0.2, 0.4,0.6, 0.8]
            }
# Instantiate a 10-fold CV grid search object 'grid_dt'
grid_dt = GridSearchCV(estimator=dt,
                       param_grid=params_dt,
                       scoring='accuracy',
                       cv=10,
                       n_jobs=-1)
# Fit 'grid_dt' to the training data
grid_dt.fit(X_train, y_train)
```

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

R datacamp

Extracting the best hyperparameters

Extract best hyperparameters from 'grid_dt' best_hyperparams = grid_dt.best_params_ print('Best hyerparameters:\n', best_hyperparams)

Best hyerparameters:

{'max_depth': 3, 'max_features': 0.4, 'min_samples_leaf': 0.06}

Extract best CV score from 'grid_dt' best_CV_score = grid_dt.best_score_ print('Best CV accuracy'.format(best_CV_score))

Best CV accuracy: 0.938

Extracting the best estimator

Extract best model from 'grid_dt' best_model = grid_dt.best_estimator_

Evaluate test set accuracy test_acc = best_model.score(X_test,y_test)

Print test set accuracy print("Test set accuracy of best model: {:.3f}".format(test_acc))

Test set accuracy of best model: 0.947

Let's practice!

Tuning an RF's Hyperparameters

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Elie Kawerk Data Scientist

Random Forests Hyperparameters

- CART hyperparameters
- number of estimators
- bootstrap

Tuning is expensive

Hyperparameter tuning:

- computationally expensive,
- sometimes leads to very slight improvement,

Weight the impact of tuning on the whole project.

Inspecting RF Hyperparameters in sklearn

Import RandomForestRegressor **from** sklearn.ensemble **import** RandomForestRegressor

```
# Set seed for reproducibility
SEED = 1
```

Instantiate a random forests regressor 'rf' = RandomForestRegressor(random_state= SEED) rf

Inspect rf' s hyperparameters rf.get_params()

{'bootstrap': True, 'criterion': 'mse', 'max_depth': None, 'max_features': 'auto', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_impurity_split': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 10, 'n_jobs': -1, 'oob_score': False, 'random_state': 1, 'verbose': 0, 'warm_start': False}


```
# Basic imports
from sklearn.metrics import mean_squared_error as MSE
from sklearn.model_selection import GridSearchCV
# Define a grid of hyperparameter 'params_rf'
params_rf = {
              'n_estimators': [300, 400, 500],
              'max_depth': [4, 6, 8],
              'min_samples_leaf': [0.1, 0.2],
              'max_features': ['log2', 'sqrt']
             }
# Instantiate 'grid_rf'
grid_rf = GridSearchCV(estimator=rf,
                       param_grid=params_rf,
                       cv=3,
                       scoring='neg_mean_squared_error',
                       verbose=1,
                       n_jobs=-1)
```

R datacamp

Searching for the best hyperparameters

Fit 'grid_rf' to the training set grid_rf.fit(X_train, y_train)

Fitting 3 folds for each of 36 candidates, totalling 108 fits [Parallel(n_jobs=-1)]: Done 42 tasks | elapsed: 10.0s [Parallel(n_jobs=-1)]: Done 108 out of 108 | elapsed: 24.3s finished RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=4, max_features='log2', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=0.1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=400, n_jobs=1, oob_score=False, random_state=1, verbose=0, warm_start=False)

Extracting the best hyperparameters

Extract the best hyperparameters from 'grid_rf' best_hyperparams = grid_rf.best_params_

print('Best hyperparameters:\n', best_hyperparams)

```
Best hyperparameters:
```

```
{'max_depth': 4,
```

```
'max_features': 'log2',
```

```
'min_samples_leaf': 0.1,
```

```
'n_estimators': 400}
```


Evaluating the best model performance

```
# Extract the best model from 'grid_rf'
best_model = grid_rf.best_estimator_
# Predict the test set labels
y_pred = best_model.predict(X_test)
# Evaluate the test set RMSE
rmse_test = MSE(y_test, y_pred)**(1/2)
# Print the test set RMSE
print('Test set RMSE of rf: {:.2f}'.format(rmse_test))
```

Test set RMSE of rf: 3.89

Let's practice!

Congratulations!

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Elie Kawerk Data Scientist

How far you have come

- **Chapter 1:** Decision-Tree Learning ${}^{\bullet}$
- **Chapter 2:** Generalization Error, Cross-Validation, Ensembling
- **Chapter 3:** Bagging and Random Forests
- **Chapter 4:** AdaBoost and Gradient-Boosting
- Chapter 5: Model Tuning

