Generalization Error

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Elie Kawerk Data Scientist

Supervised Learning - Under the Hood

• Supervised Learning: y=f(x), f is unknown.

Goals of Supervised Learning

- Find a model \hat{f} that best approximates $f \!: \hat{f} pprox f$
- \hat{f} can be Logistic Regression, Decision Tree, Neural Network ...
- Discard noise as much as possible. ${\color{black}\bullet}$
- End goal: f should achieve a low predictive error on unseen datasets.

Difficulties in Approximating f

- Overfitting: $\hat{f}(x)$ fits the training set noise.
- Underfitting: \hat{f} is not flexible enough to approximate f.

Overfitting

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Pc datacamp

Underfitting

P

datacamp

Generalization Error

- Generalization Error of \hat{f} : Does \hat{f} generalize well on unseen data?
- It can be decomposed as follows: Generalization Error of

 $\hat{f} = bias^2 + variance + irreducible error$

Bias

- Bias: error term that tells you, on average, how much $\hat{f}
eq f.$

Variance

• Variance: tells you how much \hat{f} is inconsistent over different training sets.

Model Complexity

- Model Complexity: sets the flexibility of \hat{f} .
- Example: Maximum tree depth, Minimum samples per leaf, ...

Bias-Variance Tradeoff

tacamp

Bias-Variance Tradeoff: A Visual Explanation

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

datacamp

Let's practice!

Diagnosing Bias and Variance Problems

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Elie Kawerk Data Scientist

Estimating the Generalization Error

- How do we estimate the generalization error of a model?
- Cannot be done directly because:
 - $\circ f$ is unknown,
 - usually you only have one dataset, 0
 - noise is unpredictable. 0

Estimating the Generalization Error

Solution:

- split the data to training and test sets,
- fit \hat{f} to the training set,
- evaluate the error of \hat{f} on the **unseen** test set.
- generalization error of $\hat{f} pprox$ test set error of \hat{f} .

Better Model Evaluation with Cross-Validation

- Test set should not be touched until we are confident about f's performance.
- Evaluating \hat{f} on training set: biased estimate, \hat{f} has already seen all training points.
- Solution \rightarrow Cross-Validation (CV):
 - K-Fold CV,
 - Hold-Out CV.

K-Fold CV

R datacamp

CV error =

10

Diagnose Variance Problems

- If \hat{f} suffers from high variance: CV error of \hat{f} > training set error of \hat{f} .
- f is said to overfit the training set. To remedy overfitting:
 - decrease model complexity, 0
 - for ex: decrease max depth, increase min samples per leaf, ... 0
 - gather more data, ..

Diagnose Bias Problems

- if \hat{f} suffers from high bias: CV error of $\hat{f} pprox$ training set error of $\hat{f} >>$ desired error.
- \hat{f} is said to underfit the training set. To remedy underfitting:
 - increase model complexity
 - for ex: increase max depth, decrease min samples per leaf, ...
 - gather more relevant features

K-Fold CV in sklearn on the Auto Dataset

```
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error as MSE
from sklearn.model_selection import cross_val_score
# Set seed for reproducibility
SEED = 123
# Split data into 70% train and 30% test
X_train, X_test, y_train, y_test = train_test_split(X,y,
                                                    test_size=0.3,
                                                     random_state=SEED)
# Instantiate decision tree regressor and assign it to 'dt'
dt = DecisionTreeRegressor(max_depth=4,
                           min_samples_leaf=0.14,
                           random_state=SEED)
```

K-Fold CV in sklearn on the Auto Dataset

```
# Evaluate the list of MSE ontained by 10-fold CV
# Set n_jobs to -1 in order to exploit all CPU cores in computation
MSE_CV = - cross_val_score(dt, X_train, y_train, cv= 10,
                           scoring='neg_mean_squared_error',
                           n_jobs = -1)
# Fit 'dt' to the training set
dt.fit(X_train, y_train)
# Predict the labels of training set
y_predict_train = dt.predict(X_train)
# Predict the labels of test set
y_predict_test = dt.predict(X_test)
```



```
# CV MSE
print('CV MSE: {:.2f}'.format(MSE_CV.mean()))
```

CV MSE: 20.51

Training set MSE print('Train MSE: {:.2f}'.format(MSE(y_train, y_predict_train)))

Train MSE: 15.30

Test set MSE print('Test MSE: {:.2f}'.format(MSE(y_test, y_predict_test)))

Test MSE: 20.92

Let's practice!

Ensemble Learning MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

Elie Kawerk Data Scientist

Advantages of CARTs

- Simple to understand.
- Simple to interpret.
- Easy to use.
- Flexibility: ability to describe non-linear dependencies.
- Preprocessing: no need to standardize or normalize features, ...

Limitations of CARTs

- Classification: can only produce orthogonal decision boundaries. \bullet
- Sensitive to small variations in the training set.
- High variance: unconstrained CARTs may overfit the training set.
- Solution: ensemble learning.

Ensemble Learning

- Train different models on the same dataset.
- Let each model make its predictions.
- Meta-model: aggregates predictions of individual models.
- Final prediction: more robust and less prone to errors. \bullet
- Best results: models are skillful in different ways.

Ensemble Learning: A Visual Explanation

MACHINE LEARNING WITH TREE-BASED MODELS IN PYTHON

ICOMD

Ensemble Learning in Practice: Voting Classifier

- Binary classification task. \bullet
- N classifiers make predictions: P_1 , P_2 , ..., P_N with P_i = 0 or 1.
- Meta-model prediction: hard voting.

Hard Voting

Voting Classifier in sklearn (Breast-Cancer dataset)

Import functions to compute accuracy and split data
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split

Import models, including VotingClassifier meta-model
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier as KNN
from sklearn.ensemble import VotingClassifier

```
# Set seed for reproducibility
SEED = 1
```


Voting Classifier in sklearn (Breast-Cancer dataset)

```
# Split data into 70% train and 30% test
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size= 0.3,
                                                     random state= SEED)
# Instantiate individual classifiers
lr = LogisticRegression(random_state=SEED)
knn = KNN()
dt = DecisionTreeClassifier(random_state=SEED)
# Define a list called classifier that contains the tuples (classifier_name, classifier)
classifiers = [('Logistic Regression', lr),
               ('K Nearest Neighbours', knn),
               ('Classification Tree', dt)]
```


Iterate over the defined list of tuples containing the classifiers for clf_name, clf in classifiers:

#fit clf to the training set clf.fit(X_train, y_train)

Predict the labels of the test set y_pred = clf.predict(X_test)

Evaluate the accuracy of clf on the test set print('{:s} : {:.3f}'.format(clf_name, accuracy_score(y_test, y_pred)))

Logistic Regression: 0.947 K Nearest Neighbours: 0.930 Classification Tree: 0.930

Voting Classifier in sklearn (Breast-Cancer dataset)

```
# Instantiate a VotingClassifier 'vc'
```

```
vc = VotingClassifier(estimators=classifiers)
```

```
# Fit 'vc' to the traing set and predict test set labels
vc.fit(X_train, y_train)
y_pred = vc.predict(X_test)
```

Evaluate the test-set accuracy of 'vc' print('Voting Classifier: {.3f}'.format(accuracy_score(y_test, y_pred)))

Voting Classifier: 0.953

Let's practice!

