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The past is useful
Timeseries data almost always have information that is shared between timepoints

Information in the past can help predict what happens in the future

O�en the features best-suited to predict a timeseries are previous values of the same

timeseries.
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A note on smoothness and auto-correlation
A common question to ask of a timeseries: how smooth is the data.

AKA, how correlated is a timepoint with its neighboring timepoints (called autocorrelation).

The amount of auto-correlation in data will impact your models.
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Creating time-lagged features
Let's see how we could build a model that uses values in the past as input features.

We can use this to assess how auto-correlated our signal is (and lots of other stu� too)
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Time-shifting data with Pandas
print(df) 

         df  
    0   0.0 
    1   1.0  
    2   2.0  
    3   3.0  
    4   4.0  

# Shift a DataFrame/Series by 3 index values towards the past 
print(df.shift(3)) 

         df 
    0   NaN 
    1   NaN 
    2   NaN 
    3   0.0 
    4   1.0 
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Creating a time-shifted DataFrame

# data is a pandas Series containing time series data 
data = pd.Series(...) 

# Shifts 
shifts = [0, 1, 2, 3, 4, 5, 6, 7] 

# Create a dictionary of time-shifted data 
many_shifts = {'lag_{}'.format(ii): data.shift(ii) for ii in shifts} 

# Convert them into a dataframe 
many_shifts = pd.DataFrame(many_shifts) 
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Fitting a model with time-shifted features

# Fit the model using these input features  
model = Ridge()  
model.fit(many_shifts, data) 
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Interpreting the auto-regressive model coefficients

# Visualize the fit model coefficients 
fig, ax = plt.subplots() 
ax.bar(many_shifts.columns, model.coef_) 
ax.set(xlabel='Coefficient name', ylabel='Coefficient value') 

# Set formatting so it looks nice 
plt.setp(ax.get_xticklabels(), rotation=45, horizontalalignment='right') 
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Visualizing coefficients for a rough signal
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Visualizing coefficients for a smooth signal
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Cross validation with scikit-learn

# Iterating over the "split" method yields train/test indices 
for tr, tt in cv.split(X, y): 
    model.fit(X[tr], y[tr]) 
    model.score(X[tt], y[tt]) 
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Cross validation types: KFold
KFold  cross-validation splits your data into multiple "folds" of equal size

It is one of the most common cross-validation routines

  from sklearn.model_selection import KFold 
  cv = KFold(n_splits=5) 
  for tr, tt in cv.split(X, y): 
      ... 
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Visualizing model predictions

fig, axs = plt.subplots(2, 1) 

# Plot the indices chosen for validation on each loop 
axs[0].scatter(tt, [0] * len(tt), marker='_', s=2, lw=40) 
axs[0].set(ylim=[-.1, .1], title='Test set indices (color=CV loop)',  
           xlabel='Index of raw data') 

# Plot the model predictions on each iteration 
axs[1].plot(model.predict(X[tt])) 
axs[1].set(title='Test set predictions on each CV loop',  
           xlabel='Prediction index') 
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Visualizing KFold CV behavior
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A note on shuffling your data
Many CV iterators let you shu�e data as a part of the cross-validation process.

This only works if the data is i.i.d., which timeseries usually is not.

You should not shu�e your data when making predictions with timeseries.

  from sklearn.model_selection import ShuffleSplit 

  cv = ShuffleSplit(n_splits=3) 
  for tr, tt in cv.split(X, y): 
      ... 
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Visualizing shuffled CV behavior
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Using the time series CV iterator
Thus far, we've broken the linear passage of time in the cross validation

However, you generally should not use datapoints in the future to predict data in the past

One approach: Always use training data from the past to predict the future
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Visualizing time series cross validation iterators
# Import and initialize the cross-validation iterator 
from sklearn.model_selection import TimeSeriesSplit 
cv = TimeSeriesSplit(n_splits=10) 
 
fig, ax = plt.subplots(figsize=(10, 5)) 
for ii, (tr, tt) in enumerate(cv.split(X, y)): 
    # Plot training and test indices 
    l1 = ax.scatter(tr, [ii] * len(tr), c=[plt.cm.coolwarm(.1)],  
                    marker='_', lw=6) 
    l2 = ax.scatter(tt, [ii] * len(tt), c=[plt.cm.coolwarm(.9)],  
                    marker='_', lw=6) 
    ax.set(ylim=[10, -1], title='TimeSeriesSplit behavior',  
           xlabel='data index', ylabel='CV iteration') 
    ax.legend([l1, l2], ['Training', 'Validation']) 
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Visualizing the TimeSeriesSplit cross validation iterator
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Custom scoring functions in scikit-learn

def myfunction(estimator, X, y): 
    y_pred = estimator.predict(X) 
    my_custom_score = my_custom_function(y_pred, y) 
    return my_custom_score 
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A custom correlation function for scikit-learn

def my_pearsonr(est, X, y): 
    # Generate predictions and convert to a vector  
    y_pred = est.predict(X).squeeze() 

    # Use the numpy "corrcoef" function to calculate a correlation matrix 
    my_corrcoef_matrix = np.corrcoef(y_pred, y.squeeze()) 

    # Return a single correlation value from the matrix 
    my_corrcoef = my_corrcoef[1, 0] 
    return my_corrcoef 
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Stationarity
Stationary time series do not change their statistical properties over time

E.g., mean, standard deviation, trends

Most time series are non-stationary to some extent
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Model stability
Non-stationary data results in variability in our model

The statistical properties the model �nds may change with the data

In addition, we will be less certain about the correct values of model parameters

How can we quantify this?
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Cross validation to quantify parameter stability
One approach: use cross-validation

Calculate model parameters on each iteration

Assess parameter stability across all CV splits
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Bootstrapping the mean
Bootstrapping is a common way to assess variability

The bootstrap:

1. Take a random sample of data with replacement

2. Calculate the mean of the sample

3. Repeat this process many times (1000s)

4. Calculate the percentiles of the result (usually 2.5, 97.5)

The result is a 95% con�dence interval of the mean of each coe�cient.
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Bootstrapping the mean

from sklearn.utils import resample 
 
# cv_coefficients has shape (n_cv_folds, n_coefficients) 
n_boots = 100 
bootstrap_means = np.zeros(n_boots, n_coefficients) 
for ii in range(n_boots): 
    # Generate random indices for our data with replacement,  
    # then take the sample mean 
    random_sample = resample(cv_coefficients) 
    bootstrap_means[ii] = random_sample.mean(axis=0) 
 
# Compute the percentiles of choice for the bootstrapped means 
percentiles = np.percentile(bootstrap_means, (2.5, 97.5), axis=0) 
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Plotting the bootstrapped coefficients
fig, ax = plt.subplots() 
ax.scatter(many_shifts.columns, percentiles[0], marker='_', s=200) 
ax.scatter(many_shifts.columns, percentiles[1], marker='_', s=200) 
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Assessing model performance stability
If using the TimeSeriesSplit, can plot the model's score over time.

This is useful in �nding certain regions of time that hurt the score

Also useful to �nd non-stationary signals
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Model performance over time

def my_corrcoef(est, X, y): 
    """Return the correlation coefficient  
    between model predictions and a validation set.""" 
    return np.corrcoef(y, est.predict(X))[1, 0] 

# Grab the date of the first index of each validation set 
first_indices = [data.index[tt[0]] for tr, tt in cv.split(X, y)] 

# Calculate the CV scores and convert to a Pandas Series 
cv_scores = cross_val_score(model, X, y, cv=cv, scoring=my_corrcoef) 
cv_scores = pd.Series(cv_scores, index=first_indices) 
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Visualizing model scores as a timeseries

fig, axs = plt.subplots(2, 1, figsize=(10, 5), sharex=True) 

# Calculate a rolling mean of scores over time 
cv_scores_mean = cv_scores.rolling(10, min_periods=1).mean() 
cv_scores.plot(ax=axs[0]) 
axs[0].set(title='Validation scores (correlation)', ylim=[0, 1]) 

# Plot the raw data 
data.plot(ax=axs[1]) 
axs[1].set(title='Validation data') 
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Visualizing model scores
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Fixed windows with time series cross-validation

# Only keep the last 100 datapoints in the training data 
window = 100 

# Initialize the CV with this window size 
cv = TimeSeriesSplit(n_splits=10, max_train_size=window) 
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Non-stationary signals
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Timeseries and machine learning
The many applications of time series + machine learning

Always visualize your data �rst

The scikit-learn API standardizes this process
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Feature extraction and classification
Summary statistics for time series classi�cation

Combining multiple features into a single input matrix

Feature extraction for time series data
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Model fitting and improving data quality
Time series features for regression

Generating predictions over time

Cleaning and improving time series data
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Validating and assessing our model performance
Cross-validation with time series data (don't shu�e the data!)

Time series stationarity

Assessing model coe�cient and score stability
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Advanced concepts in time series
Advanced window functions

Signal processing and �ltering details

Spectral analysis
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Advanced machine learning
Advanced time series feature extraction (e.g., tsfresh )

More complex model architectures for regression and classi�cation

Production-ready pipelines for time series analysis
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Ways to practice
There are a lot of opportunities to practice your skills with time series data.

Kaggle has a number of time series predictions challenges

Quantopian is also useful for learning and using predictive models others have built.
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