
Time-delayed
features and auto-
regressive models

MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

Chris Holdgraf

Fellow, Berkeley Institute for Data
Science

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

The past is useful
Timeseries data almost always have information that is shared between timepoints

Information in the past can help predict what happens in the future

O�en the features best-suited to predict a timeseries are previous values of the same

timeseries.

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

A note on smoothness and auto-correlation
A common question to ask of a timeseries: how smooth is the data.

AKA, how correlated is a timepoint with its neighboring timepoints (called autocorrelation).

The amount of auto-correlation in data will impact your models.

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Creating time-lagged features
Let's see how we could build a model that uses values in the past as input features.

We can use this to assess how auto-correlated our signal is (and lots of other stu� too)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Time-shifting data with Pandas
print(df)

 df
 0 0.0
 1 1.0
 2 2.0
 3 3.0
 4 4.0

Shift a DataFrame/Series by 3 index values towards the past
print(df.shift(3))

 df
 0 NaN
 1 NaN
 2 NaN
 3 0.0
 4 1.0

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Creating a time-shifted DataFrame

data is a pandas Series containing time series data
data = pd.Series(...)

Shifts
shifts = [0, 1, 2, 3, 4, 5, 6, 7]

Create a dictionary of time-shifted data
many_shifts = {'lag_{}'.format(ii): data.shift(ii) for ii in shifts}

Convert them into a dataframe
many_shifts = pd.DataFrame(many_shifts)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Fitting a model with time-shifted features

Fit the model using these input features
model = Ridge()
model.fit(many_shifts, data)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Interpreting the auto-regressive model coefficients

Visualize the fit model coefficients
fig, ax = plt.subplots()
ax.bar(many_shifts.columns, model.coef_)
ax.set(xlabel='Coefficient name', ylabel='Coefficient value')

Set formatting so it looks nice
plt.setp(ax.get_xticklabels(), rotation=45, horizontalalignment='right')

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Visualizing coefficients for a rough signal

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Visualizing coefficients for a smooth signal

Let's practice!
MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

Cross-validating
timeseries data

MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

Chris Holdgraf

Fellow, Berkeley Institute for Data
Science

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Cross validation with scikit-learn

Iterating over the "split" method yields train/test indices
for tr, tt in cv.split(X, y):
 model.fit(X[tr], y[tr])
 model.score(X[tt], y[tt])

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Cross validation types: KFold
KFold cross-validation splits your data into multiple "folds" of equal size

It is one of the most common cross-validation routines

 from sklearn.model_selection import KFold
 cv = KFold(n_splits=5)
 for tr, tt in cv.split(X, y):
 ...

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Visualizing model predictions

fig, axs = plt.subplots(2, 1)

Plot the indices chosen for validation on each loop
axs[0].scatter(tt, [0] * len(tt), marker='_', s=2, lw=40)
axs[0].set(ylim=[-.1, .1], title='Test set indices (color=CV loop)',
 xlabel='Index of raw data')

Plot the model predictions on each iteration
axs[1].plot(model.predict(X[tt]))
axs[1].set(title='Test set predictions on each CV loop',
 xlabel='Prediction index')

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Visualizing KFold CV behavior

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

A note on shuffling your data
Many CV iterators let you shu�e data as a part of the cross-validation process.

This only works if the data is i.i.d., which timeseries usually is not.

You should not shu�e your data when making predictions with timeseries.

 from sklearn.model_selection import ShuffleSplit

 cv = ShuffleSplit(n_splits=3)
 for tr, tt in cv.split(X, y):
 ...

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Visualizing shuffled CV behavior

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Using the time series CV iterator
Thus far, we've broken the linear passage of time in the cross validation

However, you generally should not use datapoints in the future to predict data in the past

One approach: Always use training data from the past to predict the future

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Visualizing time series cross validation iterators
Import and initialize the cross-validation iterator
from sklearn.model_selection import TimeSeriesSplit
cv = TimeSeriesSplit(n_splits=10)

fig, ax = plt.subplots(figsize=(10, 5))
for ii, (tr, tt) in enumerate(cv.split(X, y)):
 # Plot training and test indices
 l1 = ax.scatter(tr, [ii] * len(tr), c=[plt.cm.coolwarm(.1)],
 marker='_', lw=6)
 l2 = ax.scatter(tt, [ii] * len(tt), c=[plt.cm.coolwarm(.9)],
 marker='_', lw=6)
 ax.set(ylim=[10, -1], title='TimeSeriesSplit behavior',
 xlabel='data index', ylabel='CV iteration')
 ax.legend([l1, l2], ['Training', 'Validation'])

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Visualizing the TimeSeriesSplit cross validation iterator

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Custom scoring functions in scikit-learn

def myfunction(estimator, X, y):
 y_pred = estimator.predict(X)
 my_custom_score = my_custom_function(y_pred, y)
 return my_custom_score

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

A custom correlation function for scikit-learn

def my_pearsonr(est, X, y):
 # Generate predictions and convert to a vector
 y_pred = est.predict(X).squeeze()

 # Use the numpy "corrcoef" function to calculate a correlation matrix
 my_corrcoef_matrix = np.corrcoef(y_pred, y.squeeze())

 # Return a single correlation value from the matrix
 my_corrcoef = my_corrcoef[1, 0]
 return my_corrcoef

Let's practice!
MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

Stationarity and
stability

MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

Chris Holdgraf

Fellow, Berkeley Institute for Data
Science

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Stationarity
Stationary time series do not change their statistical properties over time

E.g., mean, standard deviation, trends

Most time series are non-stationary to some extent

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Model stability
Non-stationary data results in variability in our model

The statistical properties the model �nds may change with the data

In addition, we will be less certain about the correct values of model parameters

How can we quantify this?

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Cross validation to quantify parameter stability
One approach: use cross-validation

Calculate model parameters on each iteration

Assess parameter stability across all CV splits

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Bootstrapping the mean
Bootstrapping is a common way to assess variability

The bootstrap:

1. Take a random sample of data with replacement

2. Calculate the mean of the sample

3. Repeat this process many times (1000s)

4. Calculate the percentiles of the result (usually 2.5, 97.5)

The result is a 95% con�dence interval of the mean of each coe�cient.

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Bootstrapping the mean

from sklearn.utils import resample

cv_coefficients has shape (n_cv_folds, n_coefficients)
n_boots = 100
bootstrap_means = np.zeros(n_boots, n_coefficients)
for ii in range(n_boots):
 # Generate random indices for our data with replacement,
 # then take the sample mean
 random_sample = resample(cv_coefficients)
 bootstrap_means[ii] = random_sample.mean(axis=0)

Compute the percentiles of choice for the bootstrapped means
percentiles = np.percentile(bootstrap_means, (2.5, 97.5), axis=0)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Plotting the bootstrapped coefficients
fig, ax = plt.subplots()
ax.scatter(many_shifts.columns, percentiles[0], marker='_', s=200)
ax.scatter(many_shifts.columns, percentiles[1], marker='_', s=200)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Assessing model performance stability
If using the TimeSeriesSplit, can plot the model's score over time.

This is useful in �nding certain regions of time that hurt the score

Also useful to �nd non-stationary signals

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Model performance over time

def my_corrcoef(est, X, y):
 """Return the correlation coefficient
 between model predictions and a validation set."""
 return np.corrcoef(y, est.predict(X))[1, 0]

Grab the date of the first index of each validation set
first_indices = [data.index[tt[0]] for tr, tt in cv.split(X, y)]

Calculate the CV scores and convert to a Pandas Series
cv_scores = cross_val_score(model, X, y, cv=cv, scoring=my_corrcoef)
cv_scores = pd.Series(cv_scores, index=first_indices)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Visualizing model scores as a timeseries

fig, axs = plt.subplots(2, 1, figsize=(10, 5), sharex=True)

Calculate a rolling mean of scores over time
cv_scores_mean = cv_scores.rolling(10, min_periods=1).mean()
cv_scores.plot(ax=axs[0])
axs[0].set(title='Validation scores (correlation)', ylim=[0, 1])

Plot the raw data
data.plot(ax=axs[1])
axs[1].set(title='Validation data')

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Visualizing model scores

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Fixed windows with time series cross-validation

Only keep the last 100 datapoints in the training data
window = 100

Initialize the CV with this window size
cv = TimeSeriesSplit(n_splits=10, max_train_size=window)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Non-stationary signals

Let's practice!
MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

Wrapping-up
MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

Chris Holdgraf

Fellow, Berkeley Institute for Data
Science

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Timeseries and machine learning
The many applications of time series + machine learning

Always visualize your data �rst

The scikit-learn API standardizes this process

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Feature extraction and classification
Summary statistics for time series classi�cation

Combining multiple features into a single input matrix

Feature extraction for time series data

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Model fitting and improving data quality
Time series features for regression

Generating predictions over time

Cleaning and improving time series data

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Validating and assessing our model performance
Cross-validation with time series data (don't shu�e the data!)

Time series stationarity

Assessing model coe�cient and score stability

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Advanced concepts in time series
Advanced window functions

Signal processing and �ltering details

Spectral analysis

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Advanced machine learning
Advanced time series feature extraction (e.g., tsfresh)

More complex model architectures for regression and classi�cation

Production-ready pipelines for time series analysis

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Ways to practice
There are a lot of opportunities to practice your skills with time series data.

Kaggle has a number of time series predictions challenges

Quantopian is also useful for learning and using predictive models others have built.

Let's practice!
MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

