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Classification vs. Regression
CLASSIFICATION

classification_model.predict(X_test) 

array([0, 1, 1, 0]) 

REGRESSION

regression_model.predict(X_test) 

array([0.2, 1.4, 3.6, 0.6]) 
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Correlation and regression
Regression is similar to calculating correlation, with some key di�erences

Regression: A process that results in a formal model of the data

Correlation: A statistic that describes the data. Less information than regression model.
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Correlation between variables often changes over time
Timeseries o�en have pa�erns that change over time

Two timeseries that seem correlated at one moment may not remain so over time
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Visualizing relationships between timeseries

fig, axs = plt.subplots(1, 2) 

# Make a line plot for each timeseries 
axs[0].plot(x, c='k', lw=3, alpha=.2) 
axs[0].plot(y) 
axs[0].set(xlabel='time', title='X values = time') 

# Encode time as color in a scatterplot 
axs[1].scatter(x_long, y_long, c=np.arange(len(x_long)), cmap='viridis') 
axs[1].set(xlabel='x', ylabel='y', title='Color = time') 
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Visualizing two timeseries
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Regression models with scikit-learn

from sklearn.linear_model import LinearRegression 
model = LinearRegression() 
model.fit(X, y) 
model.predict(X) 
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Visualize predictions with scikit-learn

alphas = [.1, 1e2, 1e3] 
ax.plot(y_test, color='k', alpha=.3, lw=3) 
for ii, alpha in enumerate(alphas): 
    y_predicted = Ridge(alpha=alpha).fit(X_train, y_train).predict(X_test) 
    ax.plot(y_predicted, c=cmap(ii / len(alphas))) 
ax.legend(['True values', 'Model 1', 'Model 2', 'Model 3']) 
ax.set(xlabel="Time") 
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Visualize predictions with scikit-learn
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Scoring regression models
Two most common methods:

Correlation (r)

Coe�cient of Determination (R )2
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Coefficient of Determination (R )
The value of R  is bounded on the top by 1, and can be in�nitely low

Values closer to 1 mean the model does a be�er job of predicting outputs

1 −

2

2

variance(testdata)
error(model)
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R  in scikit-learn

from sklearn.metrics import r2_score 
print(r2_score(y_predicted, y_test)) 

0.08 

2
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Data is messy
Real-world data is o�en messy

The two most common problems are missing data and outliers

This o�en happens because of human error, machine sensor malfunction, database failures,

etc

Visualizing your raw data makes it easier to spot these problems
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What messy data looks like
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Interpolation: using time to fill in missing data
A common way to deal with missing data is to interpolate missing values

With timeseries data, you can use time to assist in interpolation.

In this case, interpolation means using using the known values on either side of a gap in the

data to make assumptions about what's missing.
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Interpolation in Pandas

# Return a boolean that notes where missing values are 
missing = prices.isna() 

# Interpolate linearly within missing windows 
prices_interp = prices.interpolate('linear') 

# Plot the interpolated data in red and the data w/ missing values in black 
ax = prices_interp.plot(c='r') 
prices.plot(c='k', ax=ax, lw=2) 
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Visualizing the interpolated data
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Using a rolling window to transform data
Another common use of rolling windows is to transform the data

We've already done this once, in order to smooth the data

However, we can also use this to do more complex transformations



MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Transforming data to standardize variance
A common transformation to apply to data is to standardize its mean and variance over

time. There are many ways to do this.

Here, we'll show how to convert your dataset so that each point represents the % change

over a previous window.

This makes timepoints more comparable to one another if the absolute values of data

change a lot
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Transforming to percent change with Pandas

def percent_change(values): 
    """Calculates the % change between the last value  
    and the mean of previous values""" 
    # Separate the last value and all previous values into variables 
    previous_values = values[:-1] 
    last_value = values[-1] 

    # Calculate the % difference between the last value  
    # and the mean of earlier values 
    percent_change = (last_value - np.mean(previous_values)) \ 
    / np.mean(previous_values) 
    return percent_change 
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Applying this to our data
# Plot the raw data 
fig, axs = plt.subplots(1, 2, figsize=(10, 5)) 
ax = prices.plot(ax=axs[0]) 
 
# Calculate % change and plot 
ax = prices.rolling(window=20).aggregate(percent_change).plot(ax=axs[1]) 
ax.legend_.set_visible(False) 



MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Finding outliers in your data
Outliers are datapoints that are signi�cantly statistically di�erent from the dataset.

They can have negative e�ects on the predictive power of your model, biasing it away from

its "true" value

One solution is to remove or replace outliers with a more representative value

Be very careful about doing this - o�en it is di�cult to determine what is a legitimately

extreme value vs an abberation
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Plotting a threshold on our data

fig, axs = plt.subplots(1, 2, figsize=(10, 5)) 
for data, ax in zip([prices, prices_perc_change], axs): 
    # Calculate the mean / standard deviation for the data 
    this_mean = data.mean() 
    this_std = data.std() 

    # Plot the data, with a window that is 3 standard deviations  
    # around the mean 
    data.plot(ax=ax) 
    ax.axhline(this_mean + this_std * 3, ls='--', c='r') 
    ax.axhline(this_mean - this_std * 3, ls='--', c='r') 
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Visualizing outlier thresholds
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Replacing outliers using the threshold
# Center the data so the mean is 0 
prices_outlier_centered = prices_outlier_perc - prices_outlier_perc.mean() 
 
# Calculate standard deviation 
std = prices_outlier_perc.std() 
 
# Use the absolute value of each datapoint  
# to make it easier to find outliers 
outliers = np.abs(prices_outlier_centered) > (std * 3) 
 
# Replace outliers with the median value 
# We'll use np.nanmean since there may be nans around the outliers 
prices_outlier_fixed = prices_outlier_centered.copy() 
prices_outlier_fixed[outliers] = np.nanmedian(prices_outlier_fixed) 
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Visualize the results
fig, axs = plt.subplots(1, 2, figsize=(10, 5)) 
prices_outlier_centered.plot(ax=axs[0]) 
prices_outlier_fixed.plot(ax=axs[1]) 
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Extracting features with windows
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Using .aggregate for feature extraction
# Visualize the raw data 
print(prices.head(3)) 

symbol            AIG        ABT 
date                             
2010-01-04  29.889999  54.459951 
2010-01-05  29.330000  54.019953 
2010-01-06  29.139999  54.319953 

# Calculate a rolling window, then extract two features 
feats = prices.rolling(20).aggregate([np.std, np.max]).dropna() 
print(feats.head(3)) 

                 AIG                  ABT            
                 std       amax       std       amax 
date                                                 
2010-02-01  2.051966  29.889999  0.868830  56.239949 
2010-02-02  2.101032  29.629999  0.869197  56.239949 
2010-02-03  2.157249  29.629999  0.852509  56.239949 
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Check the properties of your features!
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Using partial() in Python
# If we just take the mean, it returns a single value 
a = np.array([[0, 1, 2], [0, 1, 2], [0, 1, 2]]) 
print(np.mean(a)) 

1.0 

# We can use the partial function to initialize np.mean  
# with an axis parameter 
from functools import partial 
mean_over_first_axis = partial(np.mean, axis=0) 

print(mean_over_first_axis(a)) 

[0. 1. 2.] 



MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Percentiles summarize your data
Percentiles are a useful way to get more �ne-grained summaries of your data (as opposed

to using np.mean )

For a given dataset, the Nth percentile is the value where N% of the data is below that

datapoint, and 100-N% of the data is above that datapoint.

print(np.percentile(np.linspace(0, 200), q=20)) 

40.0 
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Combining np.percentile() with partial functions to
calculate a range of percentiles
data = np.linspace(0, 100) 
 
# Create a list of functions using a list comprehension 
percentile_funcs = [partial(np.percentile, q=ii) for ii in [20, 40, 60]] 
 
# Calculate the output of each function in the same way 
percentiles = [i_func(data) for i_func in percentile_funcs] 
print(percentiles) 

[20.0, 40.00000000000001, 60.0] 

# Calculate multiple percentiles of a rolling window 
data.rolling(20).aggregate(percentiles) 
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Calculating "date-based" features
Thus far we've focused on calculating "statistical" features - these are features that

correspond statistical properties of the data, like "mean", "standard deviation", etc

However, don't forget that timeseries data o�en has more "human" features associated with

it, like days of the week, holidays, etc.

These features are o�en useful when dealing with timeseries data that spans multiple years

(such as stock value over time)
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datetime features using Pandas
# Ensure our index is datetime 
prices.index = pd.to_datetime(prices.index) 
 
# Extract datetime features 
day_of_week_num = prices.index.weekday 
print(day_of_week_num[:10]) 

Index([0 1 2 3 4 0 1 2 3 4], dtype='object') 

day_of_week = prices.index.weekday_name 
print(day_of_week[:10]) 

Index(['Monday' 'Tuesday' 'Wednesday' 'Thursday' 'Friday' 'Monday' 'Tuesday' 
 'Wednesday' 'Thursday' 'Friday'], dtype='object') 
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