
Predicting data over
time

MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

Chris Holdgraf

Fellow, Berkeley Institute for Data
Science

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Classification vs. Regression
CLASSIFICATION

classification_model.predict(X_test)

array([0, 1, 1, 0])

REGRESSION

regression_model.predict(X_test)

array([0.2, 1.4, 3.6, 0.6])

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Correlation and regression
Regression is similar to calculating correlation, with some key di�erences

Regression: A process that results in a formal model of the data

Correlation: A statistic that describes the data. Less information than regression model.

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Correlation between variables often changes over time
Timeseries o�en have pa�erns that change over time

Two timeseries that seem correlated at one moment may not remain so over time

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Visualizing relationships between timeseries

fig, axs = plt.subplots(1, 2)

Make a line plot for each timeseries
axs[0].plot(x, c='k', lw=3, alpha=.2)
axs[0].plot(y)
axs[0].set(xlabel='time', title='X values = time')

Encode time as color in a scatterplot
axs[1].scatter(x_long, y_long, c=np.arange(len(x_long)), cmap='viridis')
axs[1].set(xlabel='x', ylabel='y', title='Color = time')

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Visualizing two timeseries

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Regression models with scikit-learn

from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X, y)
model.predict(X)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Visualize predictions with scikit-learn

alphas = [.1, 1e2, 1e3]
ax.plot(y_test, color='k', alpha=.3, lw=3)
for ii, alpha in enumerate(alphas):
 y_predicted = Ridge(alpha=alpha).fit(X_train, y_train).predict(X_test)
 ax.plot(y_predicted, c=cmap(ii / len(alphas)))
ax.legend(['True values', 'Model 1', 'Model 2', 'Model 3'])
ax.set(xlabel="Time")

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Visualize predictions with scikit-learn

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Scoring regression models
Two most common methods:

Correlation (r)

Coe�cient of Determination (R)2

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Coefficient of Determination (R)
The value of R is bounded on the top by 1, and can be in�nitely low

Values closer to 1 mean the model does a be�er job of predicting outputs

1 −

2

2

variance(testdata)
error(model)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

R in scikit-learn

from sklearn.metrics import r2_score
print(r2_score(y_predicted, y_test))

0.08

2

Let's practice!
MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

Cleaning and
improving your data

MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

Chris Holdgraf

Fellow, Berkeley Institute for Data
Science

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Data is messy
Real-world data is o�en messy

The two most common problems are missing data and outliers

This o�en happens because of human error, machine sensor malfunction, database failures,

etc

Visualizing your raw data makes it easier to spot these problems

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

What messy data looks like

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Interpolation: using time to fill in missing data
A common way to deal with missing data is to interpolate missing values

With timeseries data, you can use time to assist in interpolation.

In this case, interpolation means using using the known values on either side of a gap in the

data to make assumptions about what's missing.

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Interpolation in Pandas

Return a boolean that notes where missing values are
missing = prices.isna()

Interpolate linearly within missing windows
prices_interp = prices.interpolate('linear')

Plot the interpolated data in red and the data w/ missing values in black
ax = prices_interp.plot(c='r')
prices.plot(c='k', ax=ax, lw=2)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Visualizing the interpolated data

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Using a rolling window to transform data
Another common use of rolling windows is to transform the data

We've already done this once, in order to smooth the data

However, we can also use this to do more complex transformations

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Transforming data to standardize variance
A common transformation to apply to data is to standardize its mean and variance over

time. There are many ways to do this.

Here, we'll show how to convert your dataset so that each point represents the % change

over a previous window.

This makes timepoints more comparable to one another if the absolute values of data

change a lot

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Transforming to percent change with Pandas

def percent_change(values):
 """Calculates the % change between the last value
 and the mean of previous values"""
 # Separate the last value and all previous values into variables
 previous_values = values[:-1]
 last_value = values[-1]

 # Calculate the % difference between the last value
 # and the mean of earlier values
 percent_change = (last_value - np.mean(previous_values)) \
 / np.mean(previous_values)
 return percent_change

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Applying this to our data
Plot the raw data
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
ax = prices.plot(ax=axs[0])

Calculate % change and plot
ax = prices.rolling(window=20).aggregate(percent_change).plot(ax=axs[1])
ax.legend_.set_visible(False)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Finding outliers in your data
Outliers are datapoints that are signi�cantly statistically di�erent from the dataset.

They can have negative e�ects on the predictive power of your model, biasing it away from

its "true" value

One solution is to remove or replace outliers with a more representative value

Be very careful about doing this - o�en it is di�cult to determine what is a legitimately

extreme value vs an abberation

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Plotting a threshold on our data

fig, axs = plt.subplots(1, 2, figsize=(10, 5))
for data, ax in zip([prices, prices_perc_change], axs):
 # Calculate the mean / standard deviation for the data
 this_mean = data.mean()
 this_std = data.std()

 # Plot the data, with a window that is 3 standard deviations
 # around the mean
 data.plot(ax=ax)
 ax.axhline(this_mean + this_std * 3, ls='--', c='r')
 ax.axhline(this_mean - this_std * 3, ls='--', c='r')

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Visualizing outlier thresholds

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Replacing outliers using the threshold
Center the data so the mean is 0
prices_outlier_centered = prices_outlier_perc - prices_outlier_perc.mean()

Calculate standard deviation
std = prices_outlier_perc.std()

Use the absolute value of each datapoint
to make it easier to find outliers
outliers = np.abs(prices_outlier_centered) > (std * 3)

Replace outliers with the median value
We'll use np.nanmean since there may be nans around the outliers
prices_outlier_fixed = prices_outlier_centered.copy()
prices_outlier_fixed[outliers] = np.nanmedian(prices_outlier_fixed)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Visualize the results
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
prices_outlier_centered.plot(ax=axs[0])
prices_outlier_fixed.plot(ax=axs[1])

Let's practice!
MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

Creating features
over time

MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

Chris Holdgraf

Fellow, Berkeley Institute for Data
Science

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Extracting features with windows

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Using .aggregate for feature extraction
Visualize the raw data
print(prices.head(3))

symbol AIG ABT
date
2010-01-04 29.889999 54.459951
2010-01-05 29.330000 54.019953
2010-01-06 29.139999 54.319953

Calculate a rolling window, then extract two features
feats = prices.rolling(20).aggregate([np.std, np.max]).dropna()
print(feats.head(3))

 AIG ABT
 std amax std amax
date
2010-02-01 2.051966 29.889999 0.868830 56.239949
2010-02-02 2.101032 29.629999 0.869197 56.239949
2010-02-03 2.157249 29.629999 0.852509 56.239949

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Check the properties of your features!

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Using partial() in Python
If we just take the mean, it returns a single value
a = np.array([[0, 1, 2], [0, 1, 2], [0, 1, 2]])
print(np.mean(a))

1.0

We can use the partial function to initialize np.mean
with an axis parameter
from functools import partial
mean_over_first_axis = partial(np.mean, axis=0)

print(mean_over_first_axis(a))

[0. 1. 2.]

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Percentiles summarize your data
Percentiles are a useful way to get more �ne-grained summaries of your data (as opposed

to using np.mean)

For a given dataset, the Nth percentile is the value where N% of the data is below that

datapoint, and 100-N% of the data is above that datapoint.

print(np.percentile(np.linspace(0, 200), q=20))

40.0

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Combining np.percentile() with partial functions to
calculate a range of percentiles
data = np.linspace(0, 100)

Create a list of functions using a list comprehension
percentile_funcs = [partial(np.percentile, q=ii) for ii in [20, 40, 60]]

Calculate the output of each function in the same way
percentiles = [i_func(data) for i_func in percentile_funcs]
print(percentiles)

[20.0, 40.00000000000001, 60.0]

Calculate multiple percentiles of a rolling window
data.rolling(20).aggregate(percentiles)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Calculating "date-based" features
Thus far we've focused on calculating "statistical" features - these are features that

correspond statistical properties of the data, like "mean", "standard deviation", etc

However, don't forget that timeseries data o�en has more "human" features associated with

it, like days of the week, holidays, etc.

These features are o�en useful when dealing with timeseries data that spans multiple years

(such as stock value over time)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

datetime features using Pandas
Ensure our index is datetime
prices.index = pd.to_datetime(prices.index)

Extract datetime features
day_of_week_num = prices.index.weekday
print(day_of_week_num[:10])

Index([0 1 2 3 4 0 1 2 3 4], dtype='object')

day_of_week = prices.index.weekday_name
print(day_of_week[:10])

Index(['Monday' 'Tuesday' 'Wednesday' 'Thursday' 'Friday' 'Monday' 'Tuesday'
 'Wednesday' 'Thursday' 'Friday'], dtype='object')

Let's practice!
MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

