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Always visualize raw data before fitting models
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Visualize your timeseries data!
ixs = np.arange(audio.shape[-1]) 
time = ixs / sfreq 
fig, ax = plt.subplots() 
ax.plot(time, audio) 
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What features to use?
Using raw timeseries data is too noisy for classi�cation

We need to calculate features!

An easy start: summarize your audio data
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Calculating multiple features
print(audio.shape) 
# (n_files, time) 

(20, 7000)  

means = np.mean(audio, axis=-1) 
maxs = np.max(audio, axis=-1) 
stds = np.std(audio, axis=-1) 
 
print(means.shape) 
# (n_files,) 

(20,)  
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Fitting a classifier with scikit-learn
We've just collapsed a 2-D dataset (samples x time) into several features of a 1-D dataset

(samples)

We can combine each feature, and use it as an input to a model

If we have a label for each sample, we can use scikit-learn to create and �t a classi�er
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Preparing your features for scikit-learn

# Import a linear classifier 
from sklearn.svm import LinearSVC 

# Note that means are reshaped to work with scikit-learn 
X = np.column_stack([means, maxs, stds]) 
y = labels.reshape(-1, 1) 
model = LinearSVC() 
model.fit(X, y) 
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Scoring your scikit-learn model

from sklearn.metrics import accuracy_score 

# Different input data 
predictions = model.predict(X_test)   

# Score our model with % correct 
# Manually 
percent_score = sum(predictions == labels_test) / len(labels_test)   
# Using a sklearn scorer 
percent_score = accuracy_score(labels_test, predictions)   
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The auditory envelope
Smooth the data to calculate the auditory envelope

Related to the total amount of audio energy present at each moment of time
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Smoothing over time
Instead of averaging over all time, we can do a local average

This is called smoothing your timeseries

It removes short-term noise, while retaining the general pa�ern
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Smoothing your data
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Calculating a rolling window statistic

# Audio is a Pandas DataFrame 
print(audio.shape)   
# (n_times, n_audio_files) 

(5000, 20)   

# Smooth our data by taking the rolling mean in a window of 50 samples 
window_size = 50 
windowed = audio.rolling(window=window_size) 
audio_smooth = windowed.mean() 
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Calculating the auditory envelope
First rectify your audio, then smooth it

  audio_rectified = audio.apply(np.abs) 
  audio_envelope = audio_rectified.rolling(50).mean() 
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Feature engineering the envelope

# Calculate several features of the envelope, one per sound 
envelope_mean = np.mean(audio_envelope, axis=0) 
envelope_std = np.std(audio_envelope, axis=0) 
envelope_max = np.max(audio_envelope, axis=0) 

# Create our training data for a classifier 
X = np.column_stack([envelope_mean, envelope_std, envelope_max]) 
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Preparing our features for scikit-learn

X = np.column_stack([envelope_mean, envelope_std, envelope_max]) 
y = labels.reshape(-1, 1) 
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Cross validation for classification
cross_val_score  automates the process of:

Spli�ing data into training / validation sets

Fi�ing the model on training data

Scoring it on validation data

Repeating this process
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Using cross_val_score

from sklearn.model_selection import cross_val_score 

model = LinearSVC() 
scores = cross_val_score(model, X, y, cv=3)  
print(scores) 

[0.60911642 0.59975305 0.61404035] 
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Auditory features: The Tempogram
We can summarize more complex temporal information with timeseries-speci�c functions

librosa  is a great library for auditory and timeseries feature engineering

Here we'll calculate the tempogram, which estimates the tempo of a sound over time

We can calculate summary statistics of tempo in the same way that we can for the

envelope
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Computing the tempogram

# Import librosa and calculate the tempo of a 1-D sound array 
import librosa as lr 
audio_tempo = lr.beat.tempo(audio, sr=sfreq,  
                            hop_length=2**6, aggregate=None) 



Let's practice!
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Fourier transforms
Timeseries data can be described as a combination of quickly-changing things and slowly-

changing things

At each moment in time, we can describe the relative presence of fast- and slow-moving

components

The simplest way to do this is called a Fourier Transform

This converts a single timeseries into an array that describes the timeseries as a

combination of oscillations



MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

A Fourier Transform (FFT)
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Spectrograms: combinations of windows Fourier
transforms

A spectrogram is a collection of windowed Fourier transforms over time

Similar to how a rolling mean was calculated:

1. Choose a window size and shape

2. At a timepoint, calculate the FFT for that window

3. Slide the window over by one

4. Aggregate the results

Called a Short-Time Fourier Transform (STFT)
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Calculating the STFT
We can calculate the STFT with librosa

There are several parameters we can tweak (such as window size)

For our purposes, we'll convert into decibels which normalizes the average values of all

frequencies

We can then visualize it with the specshow()  function
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Calculating the STFT with code
# Import the functions we'll use for the STFT 
from librosa.core import stft, amplitude_to_db 
from librosa.display import specshow 
import matplotlib.pyplot as plt 
 
# Calculate our STFT 
HOP_LENGTH = 2**4 
SIZE_WINDOW = 2**7 
audio_spec = stft(audio, hop_length=HOP_LENGTH, n_fft=SIZE_WINDOW) 
 
# Convert into decibels for visualization 
spec_db = amplitude_to_db(audio_spec) 
 
# Visualize 
fig, ax = plt.subplots() 
specshow(spec_db, sr=sfreq, x_axis='time',  

y axis='hz' hop length=HOP LENGTH ax=ax)
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Spectral feature engineering
Each timeseries has a di�erent spectral pa�ern.

We can calculate these spectral pa�erns by analyzing the spectrogram.

For example, spectral bandwidth and spectral centroids describe where most of the energy

is at each moment in time
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Calculating spectral features

# Calculate the spectral centroid and bandwidth for the spectrogram 
bandwidths = lr.feature.spectral_bandwidth(S=spec)[0] 
centroids = lr.feature.spectral_centroid(S=spec)[0] 

# Display these features on top of the spectrogram 
fig, ax = plt.subplots() 
specshow(spec, x_axis='time', y_axis='hz', hop_length=HOP_LENGTH, ax=ax) 
ax.plot(times_spec, centroids) 
ax.fill_between(times_spec, centroids - bandwidths / 2,  
                centroids + bandwidths / 2, alpha=0.5) 
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Combining spectral and temporal features in a
classifier
centroids_all = [] 
bandwidths_all = [] 
for spec in spectrograms: 
    bandwidths = lr.feature.spectral_bandwidth(S=lr.db_to_amplitude(spec)) 
    centroids = lr.feature.spectral_centroid(S=lr.db_to_amplitude(spec)) 
    # Calculate the mean spectral bandwidth 
    bandwidths_all.append(np.mean(bandwidths))   
    # Calculate the mean spectral centroid 
    centroids_all.append(np.mean(centroids))   
 
# Create our X matrix 
X = np.column_stack([means, stds, maxs, tempo_mean,  
                     tempo_max, tempo_std, bandwidths_all, centroids_all]) 



Let's practice!
MACHINE  LEARNING FOR  T IME  SER IES  DATA IN  PYTHON


