Classification and feature engineering

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Chris Holdgraf Fellow, Berkeley Institute for Data Science

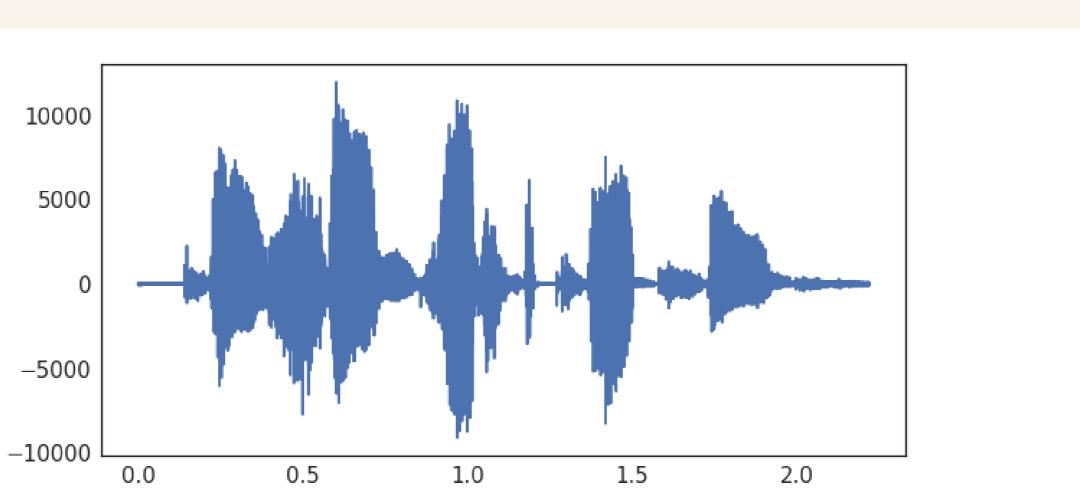
R datacamp

Always visualize raw data before fitting models

Visualize your timeseries data!

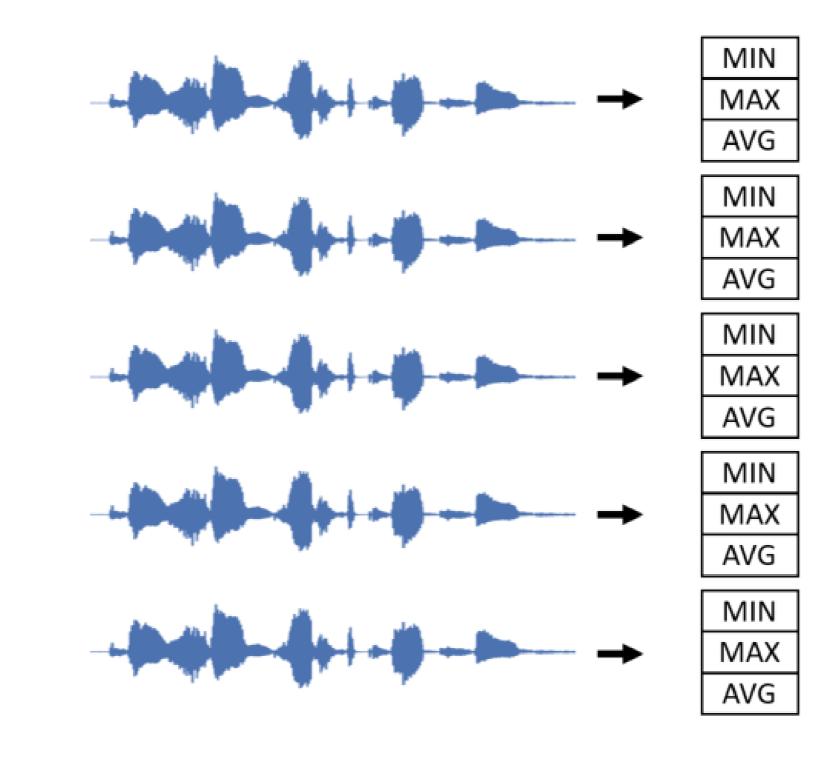
```
ixs = np.arange(audio.shape[-1])
time = ixs / sfreq
fig, ax = plt.subplots()
ax.plot(time, audio)
```

latacamp



What features to use?

- Using raw timeseries data is too noisy for classification
- We need to calculate features!
- An easy start: summarize your audio data



Calculating multiple features

print(audio.shape)
(n_files, time)

(20, 7000)

```
means = np.mean(audio, axis=-1)
maxs = np.max(audio, axis=-1)
stds = np.std(audio, axis=-1)
```

```
print(means.shape)
# (n_files,)
```

(20,)

Fitting a classifier with scikit-learn

- We've just collapsed a 2-D dataset (samples x time) into several features of a 1-D dataset (samples)
- We can combine each feature, and use it as an input to a model
- If we have a label for each sample, we can use scikit-learn to create and fit a classifier

Preparing your features for scikit-learn

Import a linear classifier from sklearn.svm import LinearSVC

Note that means are reshaped to work with scikit-learn X = np.column_stack([means, maxs, stds]) y = labels.reshape(-1, 1)model = LinearSVC() model.fit(X, y)

Scoring your scikit-learn model

from sklearn.metrics **import** accuracy_score

```
# Different input data
predictions = model.predict(X_test)
```

```
# Score our model with % correct
# Manually
percent_score = sum(predictions == labels_test) / len(labels_test)
# Using a sklearn scorer
percent_score = accuracy_score(labels_test, predictions)
```


Let's practice!

Improving the features we use for classification

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Chris Holdgraf Fellow, Berkeley Institute for Data Science

The auditory envelope

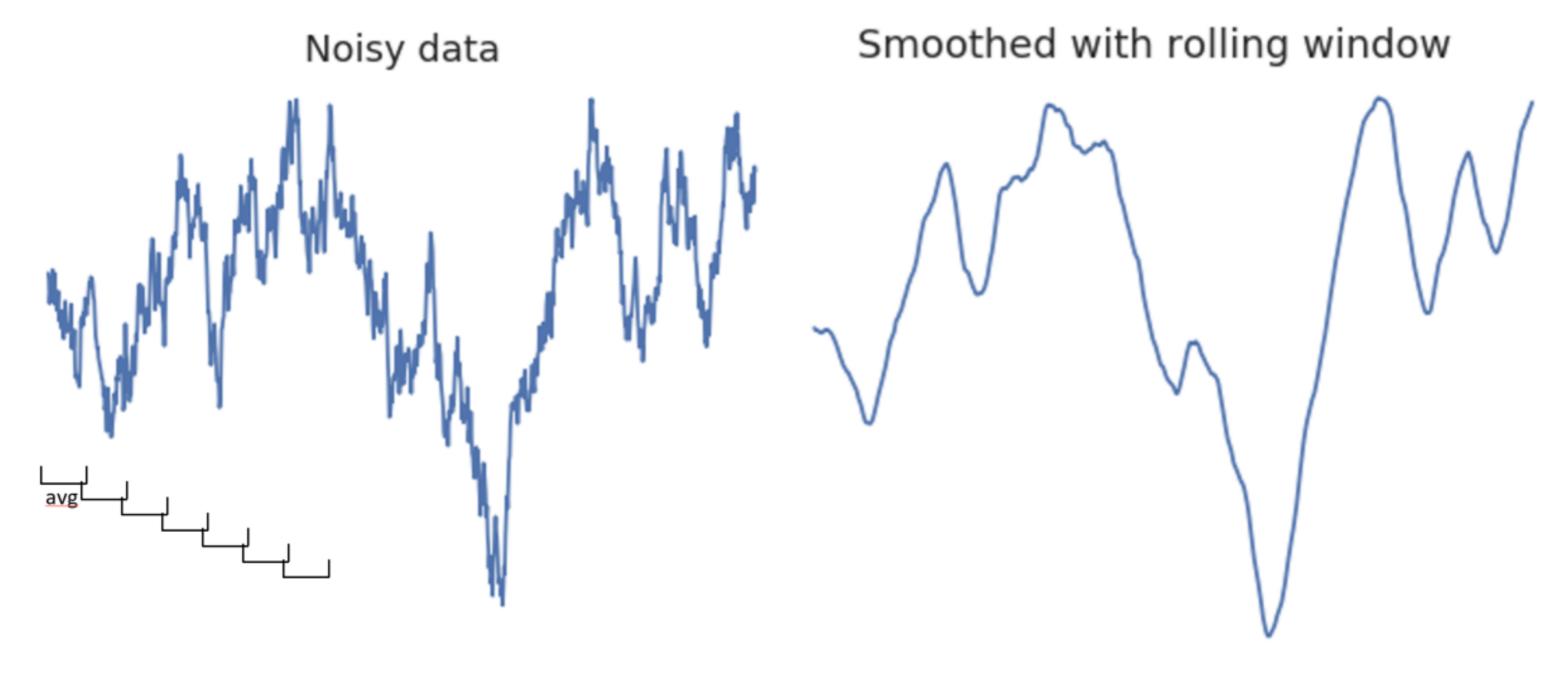
- Smooth the data to calculate the auditory envelope
- Related to the total amount of audio energy present at each moment of time

audio waveform envelope

Smoothing over time

- Instead of averaging over *all* time, we can do a *local* average
- This is called *smoothing* your timeseries \bullet
- It removes short-term noise, while retaining the general pattern

Smoothing your data



datacamp

Calculating a rolling window statistic

Audio is a Pandas DataFrame print(audio.shape) # (n_times, n_audio_files)

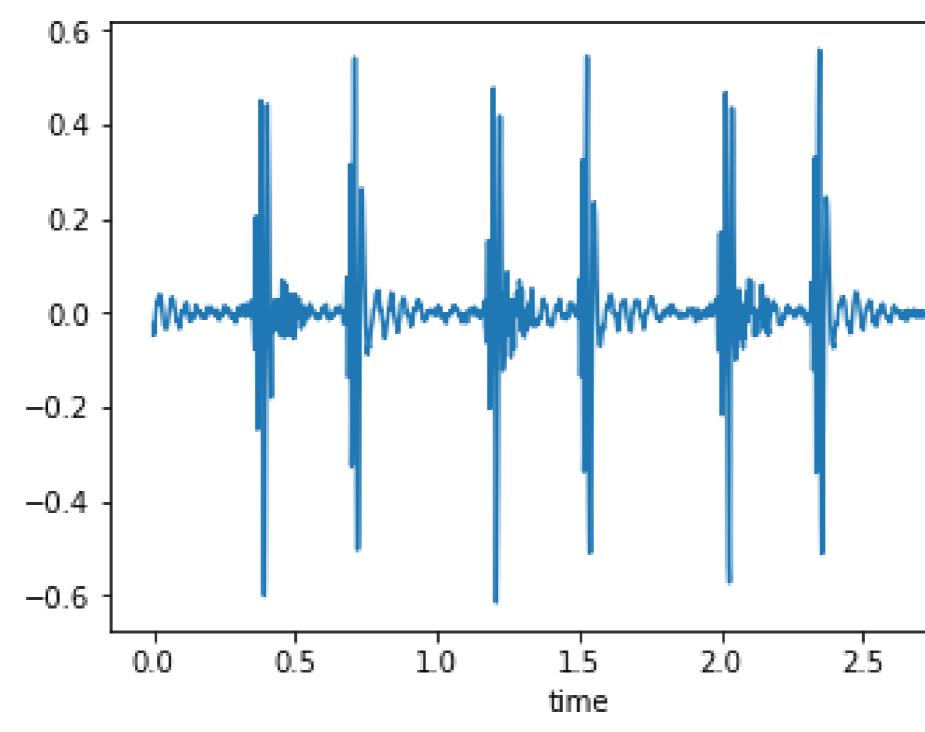
(5000, 20)

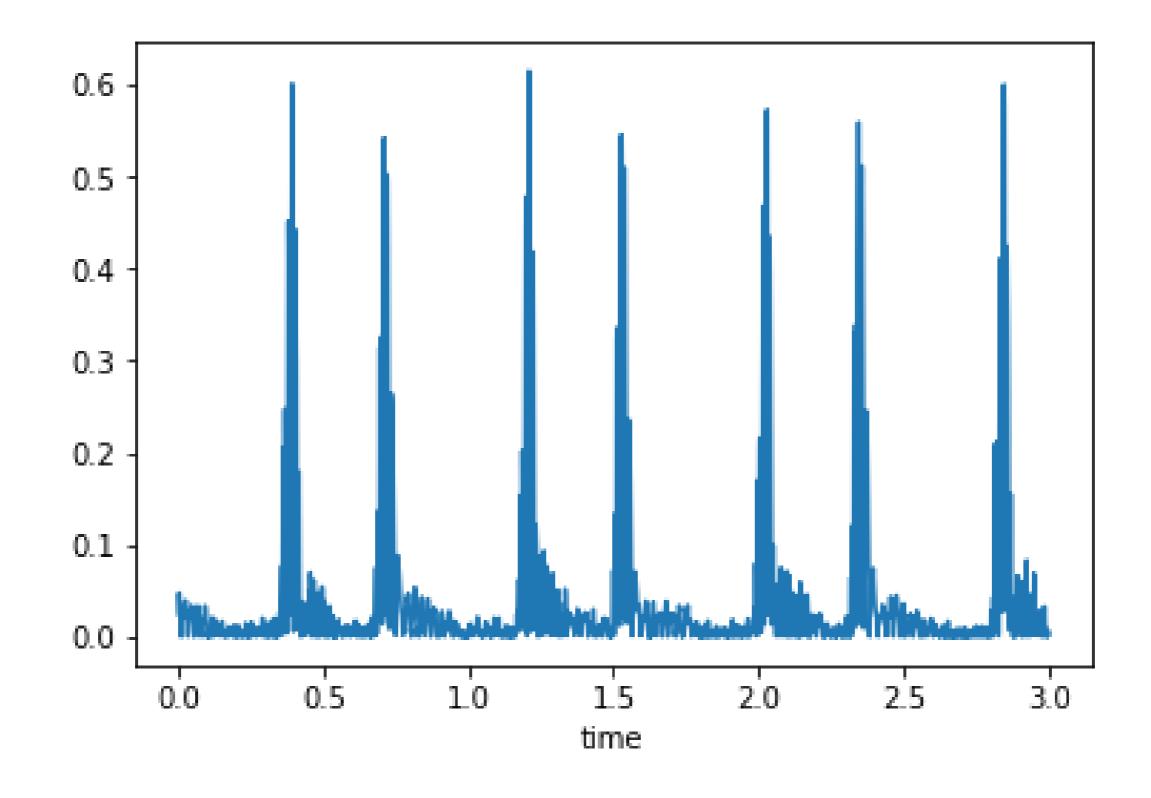
```
# Smooth our data by taking the rolling mean in a window of 50 samples
window_size = 50
windowed = audio.rolling(window=window_size)
audio_smooth = windowed.mean()
```

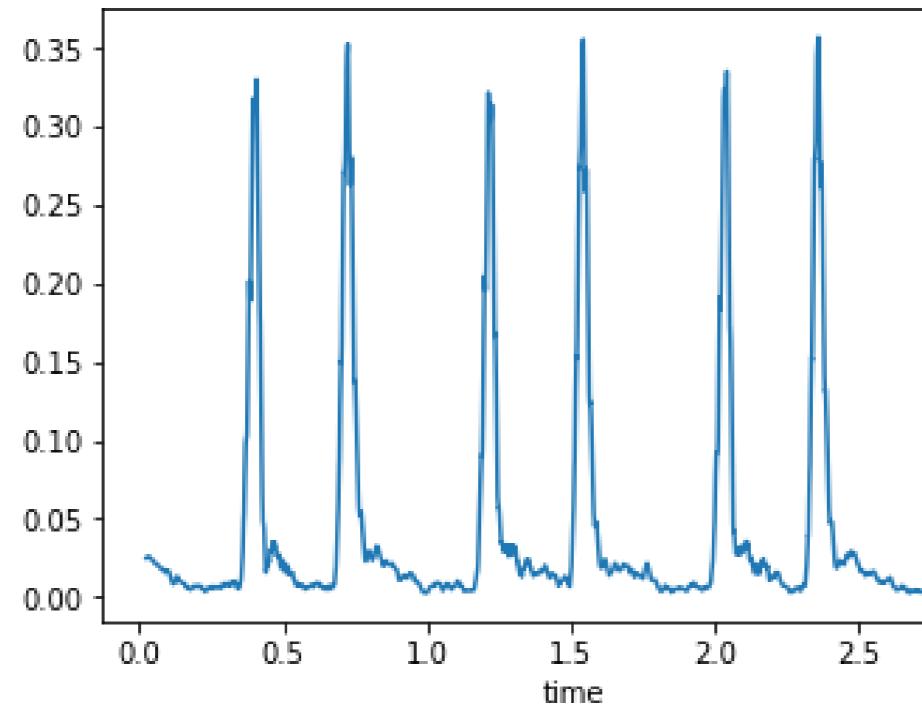

Calculating the auditory envelope

• First *rectify* your audio, then smooth it

audio_rectified = audio.apply(np.abs) audio_envelope = audio_rectified.rolling(50).mean()







MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

3.0

Feature engineering the envelope

Calculate several features of the envelope, one per sound envelope_mean = np.mean(audio_envelope, axis=0) envelope_std = np.std(audio_envelope, axis=0) envelope_max = np.max(audio_envelope, axis=0)

Create our training data for a classifier

X = np.column_stack([envelope_mean, envelope_std, envelope_max])

Preparing our features for scikit-learn

- X = np.column_stack([envelope_mean, envelope_std, envelope_max])
- y = labels.reshape(-1, 1)

Cross validation for classification

- cross_val_score automates the process of: ${}^{\bullet}$
 - Splitting data into training / validation sets 0
 - Fitting the model on training data 0
 - Scoring it on validation data 0
 - Repeating this process 0

Using cross_val_score

from sklearn.model_selection import cross_val_score

```
model = LinearSVC()
scores = cross_val_score(model, X, y, cv=3)
print(scores)
```

 $[0.60911642 \ 0.59975305 \ 0.61404035]$

Auditory features: The Tempogram

- We can summarize more complex temporal information with timeseries-specific functions \bullet
- **librosa** is a great library for auditory and timeseries feature engineering
- Here we'll calculate the *tempogram*, which estimates the tempo of a sound over time
- We can calculate summary statistics of tempo in the same way that we can for the \bullet envelope

Computing the tempogram

Import librosa and calculate the tempo of a 1-D sound array import librosa as lr audio_tempo = lr.beat.tempo(audio, sr=sfreq, hop_length=2**6, aggregate=None)

Let's practice!

The spectrogram spectral changes to sound over time

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

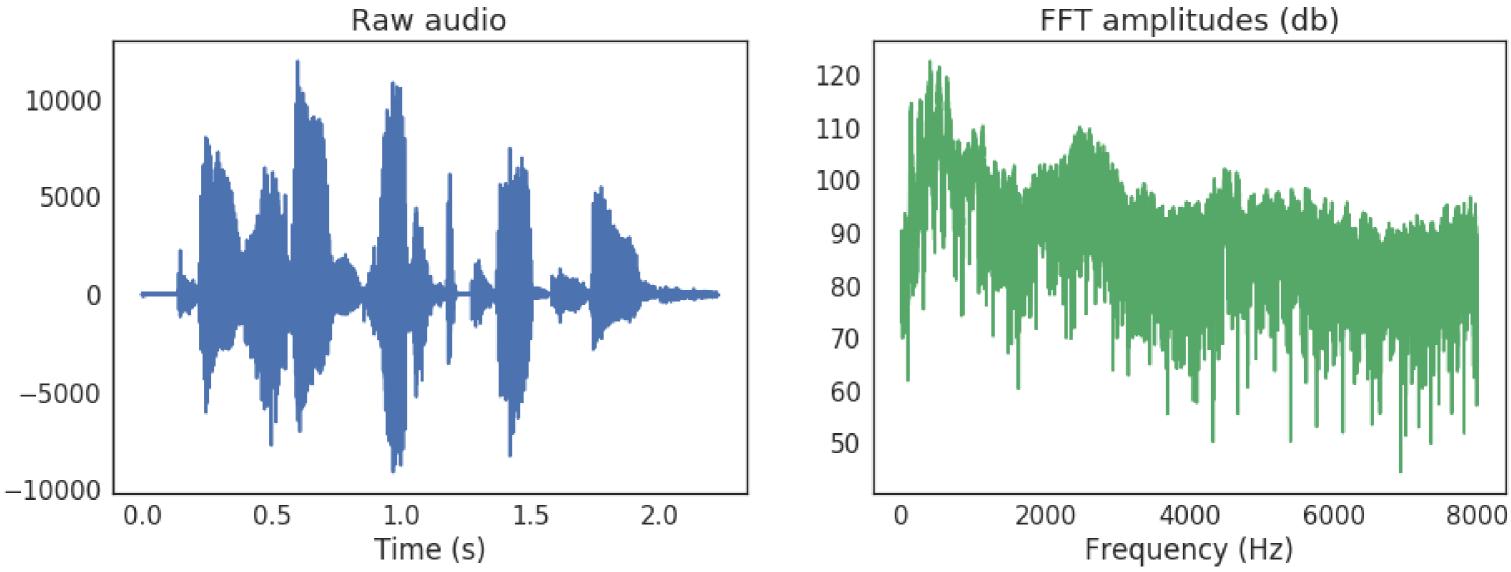
Chris Holdgraf Fellow, Berkeley Institute for Data Science

Fourier transforms

- Timeseries data can be described as a combination of quickly-changing things and slowlychanging things
- At each moment in time, we can describe the relative presence of fast- and slow-moving components
- The simplest way to do this is called a *Fourier Transform*
- This converts a single timeseries into an array that describes the timeseries as a \bullet combination of oscillations

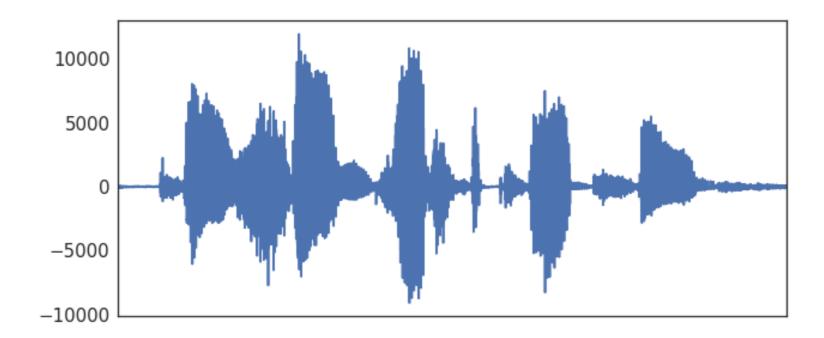
A Fourier Transform (FFT)

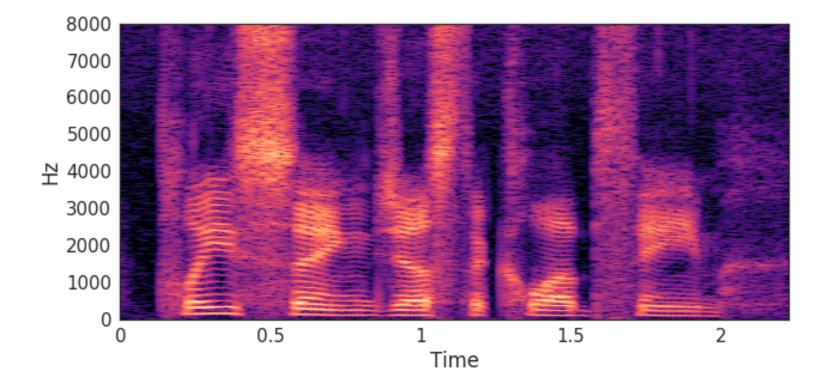
datacamp



Spectrograms: combinations of windows Fourier transforms

- A spectrogram is a collection of windowed Fourier transforms over time
- Similar to how a rolling mean was calculated:
 - 1. Choose a window size and shape
 - 2. At a timepoint, calculate the FFT for that window
 - 3. Slide the window over by one
 - 4. Aggregate the results
- Called a Short-Time Fourier Transform (STFT)





Calculating the STFT

- We can calculate the STFT with librosa
- There are several parameters we can tweak (such as window size)
- For our purposes, we'll convert into *decibels* which normalizes the average values of all frequencies
- We can then visualize it with the specshow() function

Calculating the STFT with code

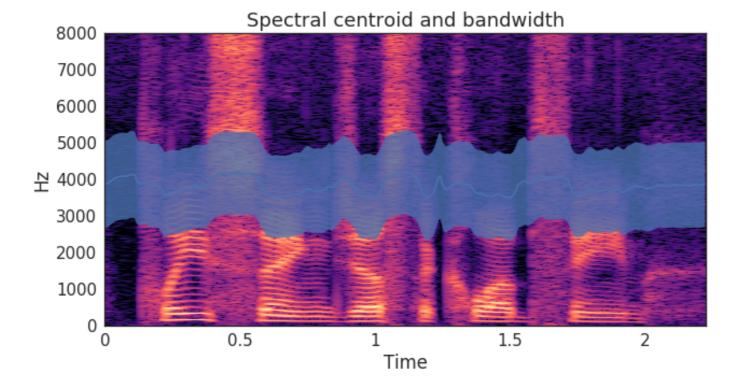
Import the functions we'll use for the STFT
from librosa.core import stft, amplitude_to_db
from librosa.display import specshow
import matplotlib.pyplot as plt

```
# Calculate our STFT
HOP_LENGTH = 2**4
SIZE_WINDOW = 2**7
audio_spec = stft(audio, hop_length=HOP_LENGTH, n_fft=SIZE_WINDOW)
```

Convert into decibels for visualization
spec_db = amplitude_to_db(audio_spec)

Spectral feature engineering

- Each timeseries has a different spectral pattern. \bullet
- We can calculate these spectral patterns by analyzing the spectrogram.
- For example, **spectral bandwidth** and **spectral centroids** describe where most of the energy is at each moment in time



Calculating spectral features

Calculate the spectral centroid and bandwidth for the spectrogram bandwidths = lr.feature.spectral_bandwidth(S=spec)[0] centroids = lr.feature.spectral_centroid(S=spec)[0]

Display these features on top of the spectrogram fig, ax = plt.subplots() specshow(spec, x_axis='time', y_axis='hz', hop_length=HOP_LENGTH, ax=ax) ax.plot(times_spec, centroids) ax.fill_between(times_spec, centroids - bandwidths / 2, centroids + bandwidths / 2, alpha=0.5)

Combining spectral and temporal features in a classifier

```
centroids_all = []
bandwidths_all = []
for spec in spectrograms:
    bandwidths = lr.feature.spectral_bandwidth(S=lr.db_to_amplitude(spec))
    centroids = lr.feature.spectral_centroid(S=lr.db_to_amplitude(spec))
    # Calculate the mean spectral bandwidth
    bandwidths_all.append(np.mean(bandwidths))
    # Calculate the mean spectral centroid
    centroids_all.append(np.mean(centroids))
```

R datacamp

Let's practice!

