
Classification and
feature engineering

MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

Chris Holdgraf

Fellow, Berkeley Institute for Data
Science

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Always visualize raw data before fitting models

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Visualize your timeseries data!
ixs = np.arange(audio.shape[-1])
time = ixs / sfreq
fig, ax = plt.subplots()
ax.plot(time, audio)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

What features to use?
Using raw timeseries data is too noisy for classi�cation

We need to calculate features!

An easy start: summarize your audio data

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Calculating multiple features
print(audio.shape)
(n_files, time)

(20, 7000)

means = np.mean(audio, axis=-1)
maxs = np.max(audio, axis=-1)
stds = np.std(audio, axis=-1)

print(means.shape)
(n_files,)

(20,)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Fitting a classifier with scikit-learn
We've just collapsed a 2-D dataset (samples x time) into several features of a 1-D dataset

(samples)

We can combine each feature, and use it as an input to a model

If we have a label for each sample, we can use scikit-learn to create and �t a classi�er

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Preparing your features for scikit-learn

Import a linear classifier
from sklearn.svm import LinearSVC

Note that means are reshaped to work with scikit-learn
X = np.column_stack([means, maxs, stds])
y = labels.reshape(-1, 1)
model = LinearSVC()
model.fit(X, y)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Scoring your scikit-learn model

from sklearn.metrics import accuracy_score

Different input data
predictions = model.predict(X_test)

Score our model with % correct
Manually
percent_score = sum(predictions == labels_test) / len(labels_test)
Using a sklearn scorer
percent_score = accuracy_score(labels_test, predictions)

Let's practice!
MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

Improving the
features we use for

classification
MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

Chris Holdgraf

Fellow, Berkeley Institute for Data
Science

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

The auditory envelope
Smooth the data to calculate the auditory envelope

Related to the total amount of audio energy present at each moment of time

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Smoothing over time
Instead of averaging over all time, we can do a local average

This is called smoothing your timeseries

It removes short-term noise, while retaining the general pa�ern

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Smoothing your data

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Calculating a rolling window statistic

Audio is a Pandas DataFrame
print(audio.shape)
(n_times, n_audio_files)

(5000, 20)

Smooth our data by taking the rolling mean in a window of 50 samples
window_size = 50
windowed = audio.rolling(window=window_size)
audio_smooth = windowed.mean()

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Calculating the auditory envelope
First rectify your audio, then smooth it

 audio_rectified = audio.apply(np.abs)
 audio_envelope = audio_rectified.rolling(50).mean()

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Feature engineering the envelope

Calculate several features of the envelope, one per sound
envelope_mean = np.mean(audio_envelope, axis=0)
envelope_std = np.std(audio_envelope, axis=0)
envelope_max = np.max(audio_envelope, axis=0)

Create our training data for a classifier
X = np.column_stack([envelope_mean, envelope_std, envelope_max])

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Preparing our features for scikit-learn

X = np.column_stack([envelope_mean, envelope_std, envelope_max])
y = labels.reshape(-1, 1)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Cross validation for classification
cross_val_score automates the process of:

Spli�ing data into training / validation sets

Fi�ing the model on training data

Scoring it on validation data

Repeating this process

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Using cross_val_score

from sklearn.model_selection import cross_val_score

model = LinearSVC()
scores = cross_val_score(model, X, y, cv=3)
print(scores)

[0.60911642 0.59975305 0.61404035]

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Auditory features: The Tempogram
We can summarize more complex temporal information with timeseries-speci�c functions

librosa is a great library for auditory and timeseries feature engineering

Here we'll calculate the tempogram, which estimates the tempo of a sound over time

We can calculate summary statistics of tempo in the same way that we can for the

envelope

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Computing the tempogram

Import librosa and calculate the tempo of a 1-D sound array
import librosa as lr
audio_tempo = lr.beat.tempo(audio, sr=sfreq,
 hop_length=2**6, aggregate=None)

Let's practice!
MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

The spectrogram -
spectral changes to

sound over time
MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

Chris Holdgraf

Fellow, Berkeley Institute for Data
Science

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Fourier transforms
Timeseries data can be described as a combination of quickly-changing things and slowly-

changing things

At each moment in time, we can describe the relative presence of fast- and slow-moving

components

The simplest way to do this is called a Fourier Transform

This converts a single timeseries into an array that describes the timeseries as a

combination of oscillations

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

A Fourier Transform (FFT)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Spectrograms: combinations of windows Fourier
transforms

A spectrogram is a collection of windowed Fourier transforms over time

Similar to how a rolling mean was calculated:

1. Choose a window size and shape

2. At a timepoint, calculate the FFT for that window

3. Slide the window over by one

4. Aggregate the results

Called a Short-Time Fourier Transform (STFT)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Calculating the STFT
We can calculate the STFT with librosa

There are several parameters we can tweak (such as window size)

For our purposes, we'll convert into decibels which normalizes the average values of all

frequencies

We can then visualize it with the specshow() function

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Calculating the STFT with code
Import the functions we'll use for the STFT
from librosa.core import stft, amplitude_to_db
from librosa.display import specshow
import matplotlib.pyplot as plt

Calculate our STFT
HOP_LENGTH = 2**4
SIZE_WINDOW = 2**7
audio_spec = stft(audio, hop_length=HOP_LENGTH, n_fft=SIZE_WINDOW)

Convert into decibels for visualization
spec_db = amplitude_to_db(audio_spec)

Visualize
fig, ax = plt.subplots()
specshow(spec_db, sr=sfreq, x_axis='time',

y axis='hz' hop length=HOP LENGTH ax=ax)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Spectral feature engineering
Each timeseries has a di�erent spectral pa�ern.

We can calculate these spectral pa�erns by analyzing the spectrogram.

For example, spectral bandwidth and spectral centroids describe where most of the energy

is at each moment in time

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Calculating spectral features

Calculate the spectral centroid and bandwidth for the spectrogram
bandwidths = lr.feature.spectral_bandwidth(S=spec)[0]
centroids = lr.feature.spectral_centroid(S=spec)[0]

Display these features on top of the spectrogram
fig, ax = plt.subplots()
specshow(spec, x_axis='time', y_axis='hz', hop_length=HOP_LENGTH, ax=ax)
ax.plot(times_spec, centroids)
ax.fill_between(times_spec, centroids - bandwidths / 2,
 centroids + bandwidths / 2, alpha=0.5)

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Combining spectral and temporal features in a
classifier
centroids_all = []
bandwidths_all = []
for spec in spectrograms:
 bandwidths = lr.feature.spectral_bandwidth(S=lr.db_to_amplitude(spec))
 centroids = lr.feature.spectral_centroid(S=lr.db_to_amplitude(spec))
 # Calculate the mean spectral bandwidth
 bandwidths_all.append(np.mean(bandwidths))
 # Calculate the mean spectral centroid
 centroids_all.append(np.mean(centroids))

Create our X matrix
X = np.column_stack([means, stds, maxs, tempo_mean,
 tempo_max, tempo_std, bandwidths_all, centroids_all])

Let's practice!
MACHINE LEARNING FOR T IME SER IES DATA IN PYTHON

