Timeseries kinds and applications

Time Series

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

R datacamp

Time Series

What makes a time series?

Datapoint	Datapoint	Datapoint	Datapoint	Datapoint	Datapoint
1	34	12	54	76	40

Timepoint	Timepoint	Timepoint	Timepoint	Timepoint	Timepoint
2:00	2:01	2:02	2:03	2:04	2:05

Timepoint	Timepoint	Timepoint	Timepoint	Timepoint	Timepoint
Jan	Feb	March	April	May	Jun

Timepoint	Timepoint	Timepoint	Timepoint	Timepoint	Timepoint
1e-9	2e-9	3e-9	4e-9	5e-9	6e-9

Reading in a time series with Pandas

import pandas as pd import matplotlib.pyplot as plt data = pd.read_csv('data.csv') data.head()

	date	symbol	close	volume
0	2010-01-04	AAPL	214.009998	123432400.0
46	2010-01-05	AAPL	214.379993	150476200.0
92	2010-01-06	AAPL	210.969995	138040000.0
138	2010-01-07	AAPL	210.580000	119282800.0
184	2010-01-08	AAPL	211.980005	111902700.0

Plotting a pandas timeseries

import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(12, 6)) data.plot('date', 'close', ax=ax) ax.set(title="AAPL daily closing price")

A timeseries plot

datacamp

Why machine learning?

We can use really big data and really complicated data

 $^{-1}$

Manifold Learning with 1000 points, 10 neighbors

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

latacamp

Why machine learning?

latacamp

We can... 0.006 Predict the future 0.004 Automate this process \bullet 0.002 0.000 -0.002 -0.004 -0.006

0.5

0.0

1.0

1.5

Why combine these two?

R datacamp

A machine learning pipeline

- Feature extraction
- Model fitting
- Prediction and validation

Let's practice!

Machine learning basics

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Chris Holdgraf Fellow, Berkeley Institute for Data Science

Always begin by looking at your data

array.shape

(10, 5)

array[:3]

array([[0.735528 , 1.00122818, -0.28315978], [-0.94478393, 0.18658748, -0.00241224],[-0.74822942, -1.46636618, 0.69835096]])

Always begin by looking at your data

df.head()

	col1	col2	col3
0	0.735528	1.001228	-0.283160
1	-0.944784	0.186587	-0.002412
2	-0.748229	-1.466366	0.698351
3	1.038589	-0.171248	0.831457
4	-0.161904	0.003972	-0.321933

Always visualize your data

Make sure it looks the way you'd expect.

```
# Using matplotlib
fig, ax = plt.subplots()
ax.plot(...)
```

```
# Using pandas
fig, ax = plt.subplots()
df.plot(..., ax=ax)
```


Scikit-learn

Scikit-learn is the most popular machine learning library in Python

from sklearn.svm import LinearSVC

Preparing data for scikit-learn

scikit-learn expects a particular structure of data:

(samples, features)

- Make sure that your data is *at least two-dimensional* \bullet
- Make sure the first dimension is *samples*

If your data is not shaped properly

If the axes are swapped: \bullet

array.T.shape

If your data is not shaped properly

If we're missing an axis, use .reshape() : ullet

array.shape

array.reshape(-1, 1).shape

(10, 1)

-1 will automatically fill that axis with remaining values

Fitting a model with scikit-learn

Import a support vector classifier from sklearn.svm import LinearSVC

Instantiate this model model = LinearSVC()

Fit the model on some data model.fit(X, y)

It is common for y to be of shape (samples, 1)

Investigating the model

There is one coefficient per input feature model.coef_

array([[0.69417875, -0.5289162]])

Predicting with a fit model

Generate predictions

predictions = model.predict(X_test)

Let's practice

Combining timeseries data with machine learning

MACHINE LEARNING FOR TIME SERIES DATA IN PYTHON

Chris Holdgraf Fellow, Berkeley Institute for Data Science

Getting to know our data

- The datasets that we'll use in this course are all freely-available online
- There are many datasets available to download on the web, the ones we'll use come from Kaggle

The Heartbeat Acoustic Data

- Many recordings of heart sounds from different patients
- Some had normally-functioning hearts, others had abnormalities
- Data comes in the form of audio files + labels for each file
- Can we find the "abnormal" heart beats?

Loading auditory data

from glob import glob files = glob('data/heartbeat-sounds/files/*.wav')

print(files)

['data/heartbeat-sounds/proc/files/murmur__201101051104.wav',

• • •

'data/heartbeat-sounds/proc/files/murmur__201101051114.wav']

Reading in auditory data

```
import librosa as lr
# `load` accepts a path to an audio file
audio, sfreq = lr.load('data/heartbeat-sounds/proc/files/murmur__201101051104.wav')
```

print(sfreq)

2205

In this case, the sampling frequency is 2205, meaning there are 2205 samples per second

Inferring time from samples

- If we know the sampling rate of a timeseries, then we know the timestamp of each \bullet datapoint *relative to the first datapoint*
- Note: this assumes the sampling rate is fixed and no data points are lost \bullet

Creating a time array (I)

• Create an array of indices, one for each sample, and divide by the sampling frequency

```
indices = np.arange(0, len(audio))
time = indices / sfreq
```


Creating a time array (II)

• Find the time stamp for the N-1th data point. Then use linspace() to interpolate from zero to that time

final_time = (len(audio) - 1) / sfreq time = np.linspace(0, final_time, sfreq)

The New York Stock Exchange dataset

- This dataset consists of company stock values for 10 years
- Can we detect any patterns in historical records that allow us to predict the value of companies in the future?

Looking at the data

data = pd.read_csv('path/to/data.csv')

data.columns

Index(['date', 'symbol', 'close', 'volume'], dtype='object')

data.head()

	date	symbol	close	volume
0	2010-01-04	AAPL	214.009998	123432400.0
1	2010-01-04	ABT	54.459951	10829000.0
2	2010-01-04	AIG	29.889999	7750900.0
3	2010-01-04	ΑΜΑΤ	14.300000	18615100.0
4	2010-01-04	ARNC	16.650013	11512100.0

Timeseries with Pandas DataFrames

• We can investigate the object type of each column by accessing the dtypes attribute

df['date'].dtypes

0	object			
1	object			
2	object			
dtyp	e: object			

Converting a column to a time series

• To ensure that a column within a DataFrame is treated as time series, use the to_datetime() function

```
df['date'] = pd.to_datetime(df['date'])
```

df['date']

- 2017-01-01 \mathbf{O}
- 1 2017-01-02
- 2 2017-01-03

Name: date, dtype: datetime64[ns]

Let's practice!

