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Why multi-input?
Using more information Multi-modal models

Metric learning Self-supervised learning
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Omniglot dataset

 Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic
program induction. Science, 350(6266), 1332-1338.
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Two-input Dataset
from PIL import Image 

class OmniglotDataset(Dataset):  
    def __init__(self, transform, samples): 
        self.transform = transform 
        self.samples = samples 

 
    def __len__(self): 
        return len(self.samples) 

 
    def __getitem__(self, idx): 
        img_path, alphabet, label = self.samples[idx] 
        img = Image.open(img_path).convert('L') 
        img = self.transform(img) 
        return img, alphabet, label 

Assign samples and transforms

print(samples[0]) 

[( 
  'omniglot_train/.../0459_14.png',
   array([1., 0., 0., ..., 0., 0., 0.]),
   0 
 )] 

Implement __len__()

Load and transform image

Return both inputs and label
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Tensor concatenation
x = torch.tensor([ 
  [1, 2, 3], 
]) 

y = torch.tensor([ 
  [4, 5, 6], 
]) 

Concatenation along axis 0

torch.cat((x, y), dim=0) 

[[1, 2, 3], 
 [4, 5, 6]] 

Concatenation along axis 1

torch.cat((x, y), dim=1) 

[[1, 2, 3, 4, 5, 6]] 
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Two-input architecture
class Net(nn.Module): 
    def __init__(self): 
        super().__init__()  
        self.image_layer = nn.Sequential( 
            nn.Conv2d(1, 16, kernel_size=3, padding=1), 
            nn.MaxPool2d(kernel_size=2), 
            nn.ELU(), 
            nn.Flatten(), 
            nn.Linear(16*32*32, 128) 
        )  
        self.alphabet_layer = nn.Sequential( 
            nn.Linear(30, 8), 
            nn.ELU(), 
        )  
        self.classifier = nn.Sequential( 
            nn.Linear(128 + 8, 964),  
        ) 

Define image processing layer

Define alphabet processing layer

Define classifier layer
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Two-input architecture
def forward(self, x_image, x_alphabet):  
    x_image = self.image_layer(x_image)  
    x_alphabet = self.alphabet_layer(x_alphabet)  
    x = torch.cat((x_image, x_alphabet), dim=1)  
    return self.classifier(x) 

Pass image through image layer

Pass alphabet through alphabet layer

Concatenate image and alphabet outputs

Pass the result through classifier
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Training loop
net = Net() 
criterion = nn.CrossEntropyLoss() 
optimizer = optim.SGD(net.parameters(), lr=0.01) 
 
for epoch in range(10): 
    for img, alpha, labels in dataloader_train: 
        optimizer.zero_grad() 
        outputs = net(img, alpha) 
        loss = criterion(outputs, labels) 
        loss.backward() 
        optimizer.step() 

Training data consists of three items:
Image

Alphabet vector

Labels

We pass the model images and alphabets
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Why multi-output?
Multi-task learning Multi-label classification

Regularization
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Character and alphabet classification
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Character and alphabet classification
 



INTERMEDIATE DEEP LEARNING WITH PYTORCH

Two-output Dataset
class OmniglotDataset(Dataset): 
    def __init__(self, transform, samples):
        self.transform = transform 
        self.samples = samples 
 
    def __len__(self): 
        return len(self.samples) 
 
    def __getitem__(self, idx): 
        img_path, alphabet, label = \ 
            self.samples[idx] 
        img = Image.open(img_path).convert('L') 
        img = self.transform(img) 
        return img, alphabet, label 

We can use the same Dataset...

...with updated samples:

  print(samples[0]) 

  [( 
    'omniglot_train/.../0459_14.png', 
     0, 
     0, 
   )] 
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Two-output architecture
class Net(nn.Module): 
    def __init__(self, num_alpha, num_char): 
        super().__init__() 
        self.image_layer = nn.Sequential( 
            nn.Conv2d(1, 16, kernel_size=3, padding=1), 
            nn.MaxPool2d(kernel_size=2), 
            nn.ELU(), 
            nn.Flatten(), 
            nn.Linear(16*32*32, 128)
        )  
        self.classifier_alpha = nn.Linear(128, 30) 
        self.classifier_char = nn.Linear(128, 964)  
 
    def forward(self, x): 
        x_image = self.image_layer(x)  
        output_alpha = self.classifier_alpha(x_image) 
        output_char = self.classifier_char(x_image)  
        return output_alpha, output_char 

Define image-processing sub-network

Define output-specific classifiers

Pass image through dedicated sub-network

Pass the result through each output layer

Return both outputs
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Training loop
for epoch in range(10): 
    for images, labels_alpha, labels_char \
    in dataloader_train: 
        optimizer.zero_grad() 
        outputs_alpha, outputs_char = net(images)  
        loss_alpha = criterion( 
          outputs_alpha, labels_alpha 
        ) 
        loss_char = criterion( 
          outputs_char, labels_char 
        )  
        loss = loss_alpha + loss_char  
        loss.backward() 
        optimizer.step() 

Model produces two outputs

Calculate loss for each output

Combine the losses to one total loss

Backprop and optimize with the total loss
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Model evaluation
acc_alpha = Accuracy( 
    task="multiclass", num_classes=30 
) 
acc_char = Accuracy( 
    task="multiclass", num_classes=964 
) 
  
net.eval() 
with torch.no_grad(): 
    for images, labels_alpha, labels_char \
    in dataloader_test: 
        out_alpha, out_char = net(images)  
        _, pred_alpha = torch.max(out_alpha, 1) 
        _, pred_char = torch.max(out_char, 1)  
        acc_alpha(pred_alpha, labels_alpha) 
        acc_char(pred_char, labels_char) 

Set up metric for each output

Iterate over test loader and get outputs

Calculate prediction for each output

Update accuracy metrics

Calculate final accuracy scores

print(f"Alphabet: {acc_alpha.compute()}") 
print(f"Character: {acc_char.compute()}") 

Alphabet: 0.3166305720806122 
Character: 0.24064336717128754 
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Multi-output training loop revisited
for epoch in range(10): 
    for images, labels_alpha, labels_char \
    in dataloader_train: 
        optimizer.zero_grad() 
        outputs_alpha, outputs_char = net(images) 
        loss_alpha = criterion( 
          outputs_alpha, labels_alpha 
        ) 
        loss_char = criterion( 
          outputs_char, labels_char 
        ) 
        loss = loss_alpha + loss_char 
        loss.backward() 
        optimizer.step() 

Two losses: for alphabets and characters

Final loss defined as sum of alphabet and
character losses: 
loss = loss_alpha + loss_char

Both classification tasks deemed equally
important
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Varying task importance
Character classification 2 times more important than alphabet classification

Approach 1: Scale more important loss by a factor of 2

loss = loss_alpha + loss_char * 2 

Approach 2: Assign weights that sum to 1

loss = 0.33 * loss_alpha + 0.67 * loss_char 
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Warning: losses on different scales
Losses must be on the same scale before they are weighted and added

Example tasks:
Predict house price -> MSE loss

Predict quality: low, medium, high -> CrossEntropy loss

CrossEntropy is typically in the single-digits

MSE loss can reach tens of thousands

Model would ignore quality assessment task

Solution: Normalize both losses before weighting and adding

loss_price = loss_price / torch.max(loss_price) 
loss_quality = loss_quality / torch.max(loss_quality) 
loss = 0.7 * loss_price + 0.3 * loss_quality 



Let's practice!
INTERMEDIATE  DEEP  LEARNING WITH  PYTORCH



Wrap-up
INTERMEDIATE  DEEP  LEARNING WITH  PYTORCH

Michal Oleszak
Machine Learning Engineer



INTERMEDIATE DEEP LEARNING WITH PYTORCH

What you learned
1. Training robust neural networks

PyTorch and OOP

Optimizers

Vanishing and exploding gradients

 

2. Images and convolutional neural networks

Handling images with PyTorch

Training and evaluating convolutional
networks

Data augmentation

3. Sequences and recurrent neural networks

Handling sequences with PyTorch

Training and evaluating recurrent networks
(LSTM and GRU)

 

4. Multi-input and multi-output architectures

Multi-input models

Multi-output models

Loss weighting
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What's next?
What you might consider learning next:

Transformers

Self-supervised learning

 

Courses:

Deep Learning for Text with PyTorch

Deep Learning for Images with PyTorch

https://app.datacamp.com/learn/courses/deep-learning-for-text-with-pytorch
https://app.datacamp.com/learn/courses/deep-learning-for-images-with-pytorch


Congratulations and
good luck!
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