
Multi-input models
INTERMEDIATE DEEP LEARNING WITH PYTORCH

Michal Oleszak
Machine Learning Engineer

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Why multi-input?
Using more information Multi-modal models

Metric learning Self-supervised learning

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Omniglot dataset

 Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic
program induction. Science, 350(6266), 1332-1338.
1

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Character classification

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Character classification

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Character classification

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Character classification

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Two-input Dataset
from PIL import Image

class OmniglotDataset(Dataset):
 def __init__(self, transform, samples):
 self.transform = transform
 self.samples = samples

 def __len__(self):
 return len(self.samples)

 def __getitem__(self, idx):
 img_path, alphabet, label = self.samples[idx]
 img = Image.open(img_path).convert('L')
 img = self.transform(img)
 return img, alphabet, label

Assign samples and transforms

print(samples[0])

[(
 'omniglot_train/.../0459_14.png',
 array([1., 0., 0., ..., 0., 0., 0.]),
 0
)]

Implement __len__()

Load and transform image

Return both inputs and label

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Tensor concatenation
x = torch.tensor([
 [1, 2, 3],
])

y = torch.tensor([
 [4, 5, 6],
])

Concatenation along axis 0

torch.cat((x, y), dim=0)

[[1, 2, 3],
 [4, 5, 6]]

Concatenation along axis 1

torch.cat((x, y), dim=1)

[[1, 2, 3, 4, 5, 6]]

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Two-input architecture
class Net(nn.Module):
 def __init__(self):
 super().__init__()
 self.image_layer = nn.Sequential(
 nn.Conv2d(1, 16, kernel_size=3, padding=1),
 nn.MaxPool2d(kernel_size=2),
 nn.ELU(),
 nn.Flatten(),
 nn.Linear(16*32*32, 128)
)
 self.alphabet_layer = nn.Sequential(
 nn.Linear(30, 8),
 nn.ELU(),
)
 self.classifier = nn.Sequential(
 nn.Linear(128 + 8, 964),
)

Define image processing layer

Define alphabet processing layer

Define classifier layer

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Two-input architecture
def forward(self, x_image, x_alphabet):
 x_image = self.image_layer(x_image)
 x_alphabet = self.alphabet_layer(x_alphabet)
 x = torch.cat((x_image, x_alphabet), dim=1)
 return self.classifier(x)

Pass image through image layer

Pass alphabet through alphabet layer

Concatenate image and alphabet outputs

Pass the result through classifier

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Training loop
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01)

for epoch in range(10):
 for img, alpha, labels in dataloader_train:
 optimizer.zero_grad()
 outputs = net(img, alpha)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()

Training data consists of three items:
Image

Alphabet vector

Labels

We pass the model images and alphabets

Let's practice!
INTERMEDIATE DEEP LEARNING WITH PYTORCH

Multi-output models
INTERMEDIATE DEEP LEARNING WITH PYTORCH

Michal Oleszak
Machine Learning Engineer

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Why multi-output?
Multi-task learning Multi-label classification

Regularization

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Character and alphabet classification

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Character and alphabet classification

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Two-output Dataset
class OmniglotDataset(Dataset):
 def __init__(self, transform, samples):
 self.transform = transform
 self.samples = samples

 def __len__(self):
 return len(self.samples)

 def __getitem__(self, idx):
 img_path, alphabet, label = \
 self.samples[idx]
 img = Image.open(img_path).convert('L')
 img = self.transform(img)
 return img, alphabet, label

We can use the same Dataset...

...with updated samples:

 print(samples[0])

 [(
 'omniglot_train/.../0459_14.png',
 0,
 0,
)]

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Two-output architecture
class Net(nn.Module):
 def __init__(self, num_alpha, num_char):
 super().__init__()
 self.image_layer = nn.Sequential(
 nn.Conv2d(1, 16, kernel_size=3, padding=1),
 nn.MaxPool2d(kernel_size=2),
 nn.ELU(),
 nn.Flatten(),
 nn.Linear(16*32*32, 128)
)
 self.classifier_alpha = nn.Linear(128, 30)
 self.classifier_char = nn.Linear(128, 964)

 def forward(self, x):
 x_image = self.image_layer(x)
 output_alpha = self.classifier_alpha(x_image)
 output_char = self.classifier_char(x_image)
 return output_alpha, output_char

Define image-processing sub-network

Define output-specific classifiers

Pass image through dedicated sub-network

Pass the result through each output layer

Return both outputs

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Training loop
for epoch in range(10):
 for images, labels_alpha, labels_char \
 in dataloader_train:
 optimizer.zero_grad()
 outputs_alpha, outputs_char = net(images)
 loss_alpha = criterion(
 outputs_alpha, labels_alpha
)
 loss_char = criterion(
 outputs_char, labels_char
)
 loss = loss_alpha + loss_char
 loss.backward()
 optimizer.step()

Model produces two outputs

Calculate loss for each output

Combine the losses to one total loss

Backprop and optimize with the total loss

Let's practice!
INTERMEDIATE DEEP LEARNING WITH PYTORCH

Evaluation of multi-
output models and

loss weighting
INTERMEDIATE DEEP LEARNING WITH PYTORCH

Michal Oleszak
Machine Learning Engineer

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Model evaluation
acc_alpha = Accuracy(
 task="multiclass", num_classes=30
)
acc_char = Accuracy(
 task="multiclass", num_classes=964
)

net.eval()
with torch.no_grad():
 for images, labels_alpha, labels_char \
 in dataloader_test:
 out_alpha, out_char = net(images)
 _, pred_alpha = torch.max(out_alpha, 1)
 _, pred_char = torch.max(out_char, 1)
 acc_alpha(pred_alpha, labels_alpha)
 acc_char(pred_char, labels_char)

Set up metric for each output

Iterate over test loader and get outputs

Calculate prediction for each output

Update accuracy metrics

Calculate final accuracy scores

print(f"Alphabet: {acc_alpha.compute()}")
print(f"Character: {acc_char.compute()}")

Alphabet: 0.3166305720806122
Character: 0.24064336717128754

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Multi-output training loop revisited
for epoch in range(10):
 for images, labels_alpha, labels_char \
 in dataloader_train:
 optimizer.zero_grad()
 outputs_alpha, outputs_char = net(images)
 loss_alpha = criterion(
 outputs_alpha, labels_alpha
)
 loss_char = criterion(
 outputs_char, labels_char
)
 loss = loss_alpha + loss_char
 loss.backward()
 optimizer.step()

Two losses: for alphabets and characters

Final loss defined as sum of alphabet and
character losses:
loss = loss_alpha + loss_char

Both classification tasks deemed equally
important

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Varying task importance
Character classification 2 times more important than alphabet classification

Approach 1: Scale more important loss by a factor of 2

loss = loss_alpha + loss_char * 2

Approach 2: Assign weights that sum to 1

loss = 0.33 * loss_alpha + 0.67 * loss_char

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Warning: losses on different scales
Losses must be on the same scale before they are weighted and added

Example tasks:
Predict house price -> MSE loss

Predict quality: low, medium, high -> CrossEntropy loss

CrossEntropy is typically in the single-digits

MSE loss can reach tens of thousands

Model would ignore quality assessment task

Solution: Normalize both losses before weighting and adding

loss_price = loss_price / torch.max(loss_price)
loss_quality = loss_quality / torch.max(loss_quality)
loss = 0.7 * loss_price + 0.3 * loss_quality

Let's practice!
INTERMEDIATE DEEP LEARNING WITH PYTORCH

Wrap-up
INTERMEDIATE DEEP LEARNING WITH PYTORCH

Michal Oleszak
Machine Learning Engineer

INTERMEDIATE DEEP LEARNING WITH PYTORCH

What you learned
1. Training robust neural networks

PyTorch and OOP

Optimizers

Vanishing and exploding gradients

2. Images and convolutional neural networks

Handling images with PyTorch

Training and evaluating convolutional
networks

Data augmentation

3. Sequences and recurrent neural networks

Handling sequences with PyTorch

Training and evaluating recurrent networks
(LSTM and GRU)

4. Multi-input and multi-output architectures

Multi-input models

Multi-output models

Loss weighting

INTERMEDIATE DEEP LEARNING WITH PYTORCH

What's next?
What you might consider learning next:

Transformers

Self-supervised learning

Courses:

Deep Learning for Text with PyTorch

Deep Learning for Images with PyTorch

https://app.datacamp.com/learn/courses/deep-learning-for-text-with-pytorch
https://app.datacamp.com/learn/courses/deep-learning-for-images-with-pytorch

Congratulations and
good luck!

INTERMEDIATE DEEP LEARNING WITH PYTORCH

