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What we will learn
How to train robust deep learning models:

Improving training with optimizers

Mitigating vanishing and exploding
gradients

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)

Multi-input and multi-output models
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Prerequisites
The course assumes you are comfortable with the following topics:

Neural networks training:
Forward pass

Loss calculation

Backward pass (backpropagation)

Training models with PyTorch:
Datasets and DataLoaders

Model training loop

Model evaluation

Prerequisite course: Introduction to Deep Learning with PyTorch

https://projector.datacamp.com/
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Object-Oriented Programming (OOP)
We will use OOP to define:

PyTorch Datasets

PyTorch Models

In OOP, we create objects with:
Abilities (methods)

Data (attributes)
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Object-Oriented Programming (OOP)
class BankAccount: 
    def __init__(self, balance): 
        self.balance = balance 

__init__  is called when BankAccount  object is created

balance  is the attribute of the BankAccount  object

account = BankAccount(100) 
print(account.balance) 

100 
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Object-Oriented Programming (OOP)
Methods: Python functions to perform tasks

deposit  method increases balance
class BankAccount: 
    def __init__(self, balance): 
        self.balance = balance 

 
    def deposit(self, amount): 
        self.balance += amount 

account = BankAccount(100) 
account.deposit(50) 
print(account.balance) 

150 
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Water potability dataset
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PyTorch Dataset
from torch.utils.data import Dataset
 
class WaterDataset(Dataset):  
    def __init__(self, csv_path): 
        super().__init__() 
        df = pd.read_csv(csv_path) 
        self.data = df.to_numpy() 
  
    def __len__(self): 
        return self.data.shape[0] 
  
    def __getitem__(self, idx): 
        features = self.data[idx, :-1] 
        label = self.data[idx, -1] 
        return features, label 

init: load data, store as numpy array
super().__init__()  ensures 
WaterDataset  behaves like torch 
Dataset

len: return the size of the dataset

getitem:
take one argument called idx

return features and label for a single
sample at index idx
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PyTorch DataLoader
dataset_train = WaterDataset( 
    "water_train.csv" 
) 

from torch.utils.data import DataLoader 
 
dataloader_train = DataLoader( 
    dataset_train, 
    batch_size=2, 
    shuffle=True, 
) 

features, labels = next(iter(dataloader_train)) 
print(f"Features: {features},\nLabels: {labels}") 

Features: tensor([ 
  [0.4899, 0.4180, 0.6299, 0.3496, 0.4575, 
   0.3615, 0.3259, 0.5011, 0.7545], 
  [0.7953, 0.6305, 0.4480, 0.6549, 0.7813, 
   0.6566, 0.6340, 0.5493, 0.5789] 
]), 
Labels: tensor([1., 0.]) 
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PyTorch Model
Sequential model definition:

net = nn.Sequential( 
  nn.Linear(9, 16), 
  nn.ReLU(), 
  nn.Linear(16, 8), 
  nn.ReLU(), 
  nn.Linear(8, 1), 
  nn.Sigmoid(), 
) 

Class-based model definition:

class Net(nn.Module):  
    def __init__(self): 
        super().__init__() 
        self.fc1 = nn.Linear(9, 16) 
        self.fc2 = nn.Linear(16, 8) 
        self.fc3 = nn.Linear(8, 1) 
  
    def forward(self, x): 
        x = nn.functional.relu(self.fc1(x)) 
        x = nn.functional.relu(self.fc2(x)) 
        x = nn.functional.sigmoid(self.fc3(x)) 
        return x 
 
net = Net() 
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Training loop
import torch.nn as nn 
import torch.optim as optim 
 
criterion = nn.BCELoss() 
optimizer = optim.SGD(net.parameters(), lr=0.01) 
  
for epoch in range(1000): 
    for features, labels in dataloader_train:  
        optimizer.zero_grad()  
        outputs = net(features)  
        loss = criterion( 
          outputs, labels.view(-1, 1) 
        )  
        loss.backward()  
        optimizer.step() 

Define loss function and optimizer
BCELoss  for binary classification

SGD  optimizer

Iterate over epochs and training batches

Clear gradients

Forward pass: get model's outputs

Compute loss

Compute gradients

Optimizer's step: update params
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How an optimizer works
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How an optimizer works
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How an optimizer works
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How an optimizer works
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How an optimizer works
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Stochastic Gradient Descent (SGD)
optimizer = optim.SGD(net.parameters(), lr=0.01) 

Update depends on learning rate

Simple and efficient, for basic models

Rarely used in practice
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Adaptive Gradient (Adagrad)
optimizer = optim.Adagrad(net.parameters(), lr=0.01) 

Adapts learning rate for each parameter

Good for sparse data

May decrease the learning rate too fast
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Root Mean Square Propagation (RMSprop)
optimizer = optim.RMSprop(net.parameters(), lr=0.01) 

Update for each parameter based on the size of its previous gradients
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Adaptive Moment Estimation (Adam)
optimizer = optim.Adam(net.parameters(), lr=0.01) 

Arguably the most versatile and widely used

RMSprop + gradient momentum

Often used as the go-to optimizer
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Model evaluation
from torchmetrics import Accuracy 
 
acc = Accuracy(task="binary") 
  
net.eval() 
with torch.no_grad(): 
    for features, labels in dataloader_test:  
        outputs = net(features)  
        preds = (outputs >= 0.5).float()  
        acc(preds, labels.view(-1, 1)) 
  
accuracy = acc.compute() 
print(f"Accuracy: {accuracy}") 

Accuracy: 0.6759443283081055 

Set up accuracy metric

Put model in eval mode and iterate over
test data batches with no gradients

Pass data to model to get predicted
probabilities

Compute predicted labels

Update accuracy metric
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Vanishing gradients
Gradients get smaller and smaller during
backward pass

Earlier layers get small parameter updates

Model doesn't learn
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Exploding gradients
Gradients get bigger and bigger

Parameter updates are too large

Training diverges
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Solution to unstable gradients
1. Proper weights initialization

2. Good activations

3. Batch normalization
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Weights initialization
layer = nn.Linear(8, 1) 
print(layer.weight) 

Parameter containing: 
tensor([[-0.0195,  0.0992,  0.0391,  0.0212, 
         -0.3386, -0.1892, -0.3170,  0.2148]]) 
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Weights initialization
Good initialization ensures:

Variance of layer inputs = variance of layer outputs

Variance of gradients the same before and after a layer

 

How to achieve this depends on the activation:

For ReLU and similar, we can use He/Kaiming initialization
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Weights initialization
import torch.nn.init as init 

init.kaiming_uniform_(layer.weight) 
print(layer.weight) 

Parameter containing: 
tensor([[-0.3063, -0.2410,  0.0588,  0.2664, 
          0.0502, -0.0136,  0.2274,  0.0901]]) 
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He / Kaiming initialization
init.kaiming_uniform_(self.fc1.weight) 
init.kaiming_uniform_(self.fc2.weight) 
init.kaiming_uniform_( 
  self.fc3.weight, 
  nonlinearity="sigmoid", 
) 
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He / Kaiming initialization
import torch.nn as nn 
import torch.nn.init as init 
 
class Net(nn.Module): 
    def __init__(self): 
        super().__init__() 
        self.fc1 = nn.Linear(9, 16) 
        self.fc2 = nn.Linear(16, 8) 
        self.fc3 = nn.Linear(8, 1) 
  
        init.kaiming_uniform_(self.fc1.weight) 
        init.kaiming_uniform_(self.fc2.weight) 
        init.kaiming_uniform_( 
          self.fc3.weight, 
          nonlinearity="sigmoid", 
        ) 

 
 
 
 
    def forward(self, x): 
        x = nn.functional.relu(self.fc1(x)) 
        x = nn.functional.relu(self.fc2(x)) 
        x = nn.functional.sigmoid(self.fc3(x)) 
        return x 
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Activation functions

Often used as the default activation

nn.functional.relu()

Zero for negative inputs - dying neurons

nn.functional.elu()

Non-zero gradients for negative values -
helps against dying neurons

Average output around zero - helps against
vanishing gradients
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Batch normalization
After a layer:

1. Normalize the layer's outputs by:
Subtracting the mean

Dividing by the standard deviation

2. Scale and shift normalized outputs using learned parameters

Model learns optimal inputs distribution for each layer:

Faster loss decrease

Helps against unstable gradients
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Batch normalization
class Net(nn.Module): 
    def __init__(self): 
        super().__init__() 
        self.fc1 = nn.Linear(9, 16) 
        self.bn1 = nn.BatchNorm1d(16) 

        ... 
 

    def forward(self, x): 
        x = self.fc1(x) 
        x = self.bn1(x) 
        x = nn.functional.elu(x) 
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