
PyTorch and object-
oriented

programming
INTERMEDIATE DEEP LEARNING WITH PYTORCH

Michal Oleszak
Machine Learning Engineer

INTERMEDIATE DEEP LEARNING WITH PYTORCH

What we will learn
How to train robust deep learning models:

Improving training with optimizers

Mitigating vanishing and exploding
gradients

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)

Multi-input and multi-output models

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Prerequisites
The course assumes you are comfortable with the following topics:

Neural networks training:
Forward pass

Loss calculation

Backward pass (backpropagation)

Training models with PyTorch:
Datasets and DataLoaders

Model training loop

Model evaluation

Prerequisite course: Introduction to Deep Learning with PyTorch

https://projector.datacamp.com/

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Object-Oriented Programming (OOP)
We will use OOP to define:

PyTorch Datasets

PyTorch Models

In OOP, we create objects with:
Abilities (methods)

Data (attributes)

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Object-Oriented Programming (OOP)
class BankAccount:
 def __init__(self, balance):
 self.balance = balance

__init__ is called when BankAccount object is created

balance is the attribute of the BankAccount object

account = BankAccount(100)
print(account.balance)

100

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Object-Oriented Programming (OOP)
Methods: Python functions to perform tasks

deposit method increases balance
class BankAccount:
 def __init__(self, balance):
 self.balance = balance

 def deposit(self, amount):
 self.balance += amount

account = BankAccount(100)
account.deposit(50)
print(account.balance)

150

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Water potability dataset

INTERMEDIATE DEEP LEARNING WITH PYTORCH

PyTorch Dataset
from torch.utils.data import Dataset

class WaterDataset(Dataset):
 def __init__(self, csv_path):
 super().__init__()
 df = pd.read_csv(csv_path)
 self.data = df.to_numpy()

 def __len__(self):
 return self.data.shape[0]

 def __getitem__(self, idx):
 features = self.data[idx, :-1]
 label = self.data[idx, -1]
 return features, label

init: load data, store as numpy array
super().__init__() ensures
WaterDataset behaves like torch
Dataset

len: return the size of the dataset

getitem:
take one argument called idx

return features and label for a single
sample at index idx

INTERMEDIATE DEEP LEARNING WITH PYTORCH

PyTorch DataLoader
dataset_train = WaterDataset(
 "water_train.csv"
)

from torch.utils.data import DataLoader

dataloader_train = DataLoader(
 dataset_train,
 batch_size=2,
 shuffle=True,
)

features, labels = next(iter(dataloader_train))
print(f"Features: {features},\nLabels: {labels}")

Features: tensor([
 [0.4899, 0.4180, 0.6299, 0.3496, 0.4575,
 0.3615, 0.3259, 0.5011, 0.7545],
 [0.7953, 0.6305, 0.4480, 0.6549, 0.7813,
 0.6566, 0.6340, 0.5493, 0.5789]
]),
Labels: tensor([1., 0.])

INTERMEDIATE DEEP LEARNING WITH PYTORCH

PyTorch Model
Sequential model definition:

net = nn.Sequential(
 nn.Linear(9, 16),
 nn.ReLU(),
 nn.Linear(16, 8),
 nn.ReLU(),
 nn.Linear(8, 1),
 nn.Sigmoid(),
)

Class-based model definition:

class Net(nn.Module):
 def __init__(self):
 super().__init__()
 self.fc1 = nn.Linear(9, 16)
 self.fc2 = nn.Linear(16, 8)
 self.fc3 = nn.Linear(8, 1)

 def forward(self, x):
 x = nn.functional.relu(self.fc1(x))
 x = nn.functional.relu(self.fc2(x))
 x = nn.functional.sigmoid(self.fc3(x))
 return x

net = Net()

Let's practice!
INTERMEDIATE DEEP LEARNING WITH PYTORCH

Optimizers, training,
and evaluation

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Michal Oleszak
Machine Learning Engineer

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Training loop
import torch.nn as nn
import torch.optim as optim

criterion = nn.BCELoss()
optimizer = optim.SGD(net.parameters(), lr=0.01)

for epoch in range(1000):
 for features, labels in dataloader_train:
 optimizer.zero_grad()
 outputs = net(features)
 loss = criterion(
 outputs, labels.view(-1, 1)
)
 loss.backward()
 optimizer.step()

Define loss function and optimizer
BCELoss for binary classification

SGD optimizer

Iterate over epochs and training batches

Clear gradients

Forward pass: get model's outputs

Compute loss

Compute gradients

Optimizer's step: update params

INTERMEDIATE DEEP LEARNING WITH PYTORCH

How an optimizer works

INTERMEDIATE DEEP LEARNING WITH PYTORCH

How an optimizer works

INTERMEDIATE DEEP LEARNING WITH PYTORCH

How an optimizer works

INTERMEDIATE DEEP LEARNING WITH PYTORCH

How an optimizer works

INTERMEDIATE DEEP LEARNING WITH PYTORCH

How an optimizer works

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Stochastic Gradient Descent (SGD)
optimizer = optim.SGD(net.parameters(), lr=0.01)

Update depends on learning rate

Simple and efficient, for basic models

Rarely used in practice

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Adaptive Gradient (Adagrad)
optimizer = optim.Adagrad(net.parameters(), lr=0.01)

Adapts learning rate for each parameter

Good for sparse data

May decrease the learning rate too fast

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Root Mean Square Propagation (RMSprop)
optimizer = optim.RMSprop(net.parameters(), lr=0.01)

Update for each parameter based on the size of its previous gradients

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Adaptive Moment Estimation (Adam)
optimizer = optim.Adam(net.parameters(), lr=0.01)

Arguably the most versatile and widely used

RMSprop + gradient momentum

Often used as the go-to optimizer

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Model evaluation
from torchmetrics import Accuracy

acc = Accuracy(task="binary")

net.eval()
with torch.no_grad():
 for features, labels in dataloader_test:
 outputs = net(features)
 preds = (outputs >= 0.5).float()
 acc(preds, labels.view(-1, 1))

accuracy = acc.compute()
print(f"Accuracy: {accuracy}")

Accuracy: 0.6759443283081055

Set up accuracy metric

Put model in eval mode and iterate over
test data batches with no gradients

Pass data to model to get predicted
probabilities

Compute predicted labels

Update accuracy metric

Let's practice!
INTERMEDIATE DEEP LEARNING WITH PYTORCH

Vanishing and
exploding gradients

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Michal Oleszak
Machine Learning Engineer

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Vanishing gradients
Gradients get smaller and smaller during
backward pass

Earlier layers get small parameter updates

Model doesn't learn

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Exploding gradients
Gradients get bigger and bigger

Parameter updates are too large

Training diverges

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Solution to unstable gradients
1. Proper weights initialization

2. Good activations

3. Batch normalization

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Weights initialization
layer = nn.Linear(8, 1)
print(layer.weight)

Parameter containing:
tensor([[-0.0195, 0.0992, 0.0391, 0.0212,
 -0.3386, -0.1892, -0.3170, 0.2148]])

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Weights initialization
Good initialization ensures:

Variance of layer inputs = variance of layer outputs

Variance of gradients the same before and after a layer

How to achieve this depends on the activation:

For ReLU and similar, we can use He/Kaiming initialization

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Weights initialization
import torch.nn.init as init

init.kaiming_uniform_(layer.weight)
print(layer.weight)

Parameter containing:
tensor([[-0.3063, -0.2410, 0.0588, 0.2664,
 0.0502, -0.0136, 0.2274, 0.0901]])

INTERMEDIATE DEEP LEARNING WITH PYTORCH

He / Kaiming initialization
init.kaiming_uniform_(self.fc1.weight)
init.kaiming_uniform_(self.fc2.weight)
init.kaiming_uniform_(
 self.fc3.weight,
 nonlinearity="sigmoid",
)

INTERMEDIATE DEEP LEARNING WITH PYTORCH

He / Kaiming initialization
import torch.nn as nn
import torch.nn.init as init

class Net(nn.Module):
 def __init__(self):
 super().__init__()
 self.fc1 = nn.Linear(9, 16)
 self.fc2 = nn.Linear(16, 8)
 self.fc3 = nn.Linear(8, 1)

 init.kaiming_uniform_(self.fc1.weight)
 init.kaiming_uniform_(self.fc2.weight)
 init.kaiming_uniform_(
 self.fc3.weight,
 nonlinearity="sigmoid",
)

 def forward(self, x):
 x = nn.functional.relu(self.fc1(x))
 x = nn.functional.relu(self.fc2(x))
 x = nn.functional.sigmoid(self.fc3(x))
 return x

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Activation functions

Often used as the default activation

nn.functional.relu()

Zero for negative inputs - dying neurons

nn.functional.elu()

Non-zero gradients for negative values -
helps against dying neurons

Average output around zero - helps against
vanishing gradients

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Batch normalization
After a layer:

1. Normalize the layer's outputs by:
Subtracting the mean

Dividing by the standard deviation

2. Scale and shift normalized outputs using learned parameters

Model learns optimal inputs distribution for each layer:

Faster loss decrease

Helps against unstable gradients

INTERMEDIATE DEEP LEARNING WITH PYTORCH

Batch normalization
class Net(nn.Module):
 def __init__(self):
 super().__init__()
 self.fc1 = nn.Linear(9, 16)
 self.bn1 = nn.BatchNorm1d(16)

 ...

 def forward(self, x):
 x = self.fc1(x)
 x = self.bn1(x)
 x = nn.functional.elu(x)

Let's practice!
INTERMEDIATE DEEP LEARNING WITH PYTORCH

