Image restoration

IMAGE PROCESSING IN PYTHON

O

Rebeca Gonzalez
Data Engineer

X datacamp

Restore an image

Image to restore Image restored

X datacamp IMAGE PROCESSING IN PYTHON

Image reconstruction
e Fixing damaged images

e Text removing

e Logo removing

e Object removing

X datacawmp IMAGE PROCESSING IN PYTHON

Image reconstruction

Inpainting

e Reconstructing lost parts of images

 Looking at the non-damaged regions

X datacamp

Image to restore

Inpainting

Image restored

IMAGE PROCESSING IN PYTHON

Image reconstruction

Image to restore

Damaged pixels

¢

Set as a mask

X datacamp IMAGE PROCESSING IN PYTHON

Image reconstruction in scikit-image

from skimage.restoration import inpaint

Obtain the mask
mask = get_mask(defect_image)

Apply inpainting to the damaged image using the mask

restored_image = inpaint.inpaint_biharmonic(defect_image,
mask,
multichannel=True)

Show the resulting image
show_image(restored_image)

IMAGE PROCESSING IN PYTHON

Image reconstruction in scikit-image

Show the defect and resulting images
show_image (defect_image, 'Image to restore')
show_image(restored_image, 'Image restored')

Image to restore Image restored

X datacamp IMAGE PROCESSING IN PYTHON

Masks

Image to restore Mask

IMAGE PROCESSING IN PYTHON

Masks

def get_mask(image):
'''" Creates mask with three defect regions '''
mask = np.zeros(image.shapel[:-1])

mask[101:106, 0:240] = 1

mask[152:154, 0:60] = 1

mask[153:155, 60:100] = 1
mask[154:156, 100:120] = 1
mask[155:156, 120:140] = 1

mask[212:217, 0:150] = 1
mask[217:222, 150:256]
return mask

I
=

IMAGE PROCESSING IN PYTHON

Let's practice!

IMAGE PROCESSING IN PYTHON

Noise

IMAGE PROCESSING IN PYTHON

O

Rebeca Gonzalez

Data Engineer

X datacamp

X datacawmp IMAGE PROCESSING IN PYTHON

Noise

A

ANE
P

-
-

L
ST
2
£
L

=~

£

3 A

IMAGE PROCESSING IN PYTHON

X datacawp

Apply noise in scikit-image

Import the module and function
from skimage.util import random_noise

Add nolse to the image

noisy_image = random_noise(dog_image)
Show original and resulting image

show_image (dog_image)

show_image(noisy_image, 'Noisy image')

IMAGE PROCESSING IN PYTHON

Apply noise in scikit-image

Original Noisy image

-

)

X datacamp IMAGE PROCESSING IN PYTHON

Reducing noise

Noisy iImage
S AT R LYY f

- ---_n-l;)-r,--ﬁ-"'! f

Denoised

AT
pi o aln ;

i o, A [ty
R s Bt o

......-—

.. !
&l
e

=

X datacamp IMAGE PROCESSING IN PYTHON

Denoising types
e Total variation (TV) . WASISELE
e Bilateral

 Wavelet denoising

 Non-local means denoising

Bilateral denoising

X datacamp IMAGE PROCESSING IN PYTHON

Denoising

Using total variation filter denoising

from skimage.restoration import denoise_tv_chambolle

Apply total variation filter denoising

denoised_image = denoise_tv_chambolle(noisy_image,
welght=0.1,
multichannel=True)

Show denolsed image

show_image(noisy_image, 'Noisy image')
show_image(denoised_image, 'Denoised image')

IMAGE PROCESSING IN PYTHON

Denoising

Total variation filter

Noisy image Denoised image

X datacamp IMAGE PROCESSING IN PYTHON

Denoising

Bilateral filter

from skimage.restoration import denoise_bilateral

Apply bilateral filter denoilsing

denoised_image = denoise_bilateral(noisy_image, multichannel=True)
Show original and resulting 1mages

show_image(noisy_image, 'Noisy image')

show_image(denoised_image, 'Denoised image')

IMAGE PROCESSING IN PYTHON

Denoising

Bilateral filter

Noisy image Denoised image

X datacamp IMAGE PROCESSING IN PYTHON

Let's practice!

IMAGE PROCESSING IN PYTHON

Superpixels &
segmentation

IMAGE PROCESSING IN PYTHON

Rebeca Gonzalez
Data Engineer

Segmentation

Ornginal Segmentated image

IMAGE PROCESSING IN PYTHON

Segmentation

Segmented Original Segmented
ﬁ

IMAGE PROCESSING IN PYTHON

Image representation

X datacawp IMAGE PROCESSING IN PYTHON

Superpixels

Superpixel segmentation, 100 segments
. ; y o '[_r.I

- ..'E' k r ::.-L

X datacamp IMAGE PROCESSING IN PYTHON

Benefits of superpixels

e More meaningful regions

e Computational efficiency

IMAGE PROCESSING IN PYTHON

Segmentation

e Supervised

Supervised thresholding

e Unsupervised

IMAGE PROCESSING IN PYTHON

Unsupervised segmentation
Simple Linear Iterative Clustering (SLIC)

Superpixel segmentation, 100 segments
] . s = _[.r_l

~ar _.'. k o ::-_L

X datacamp IMAGE PROCESSING IN PYTHON

Unsupervised segmentation (SLIC)

Import the modules
from skimage.segmentation import slic
from skimage.color import label2rgb

Obtain the segments
segments = slic(image)

Put segments on top of original image to compare
segmented_image = label2rgb(segments, image, kind='avg')

show_image (image)
show_image (segmented_image, "Segmented image")

IMAGE PROCESSING IN PYTHON

Unsupervised segmentation (SLIC)

Ornginal | Segmented iImage

X datacamp IMAGE PROCESSING IN PYTHON

More segments

Import the modules
from skimage.segmentation import slic
from skimage.color import label2rgb

Obtain the segmentation with 300 regions
segments = slic(image, n_segments= 300)

Put segments on top of original 1mage to compare
segmented_image = label2rgb(segments, image, kind='avg')

show_image(segmented_image)

IMAGE PROCESSING IN PYTHON

More segments

Onginal | Segmented iImage

X datacamp IMAGE PROCESSING IN PYTHON

Let's practice!

IMAGE PROCESSING IN PYTHON

Finding contours

IMAGE PROCESSING IN PYTHON

O

Rebeca Gonzalez
Data Engineer

X datacamp

Finding contours

Original image Contours

e Measure size Total points in domino tokens: 29.

e Classify shapes

e Determine the number of objects

IMAGE PROCESSING IN PYTHON

Binary images

Thresholded Image Contours

We can obtain a binary image applying
thresholding or using edge detection

IMAGE PROCESSING IN PYTHON

Find contours using scikit-image

PREPARING THE IMAGE
Transform the image to 2D grayscale.

Make the image grayscale

image = color.rgh2gray(image)

IMAGE PROCESSING IN PYTHON

Find contours using scikit-image

PREPARING THE IMAGE
Binarize the image

Obtalin the thresh value
thresh = threshold_otsu(image)

Apply thresholding
thresholded_image = 1image > thresh

Thresholded

e

IMAGE PROCESSING IN PYTHON

Find contours using scikit-image

And then use find_contours() .

Import the measure module
from skimage import measure

Find contours at a constant value of 0.8
contours = measure.find_contours(thresholded_image, 0.8)

Contours

IMAGE PROCESSING IN PYTHON

Constant level value

X datacamp

Level value of 0.1 Level value of 0.5
1) J N

» O ¢ O«

Level value of 0.8

IMAGE PROCESSING IN PYTHON

The steps to spotting contours

from skimage import measure
from skimage.filters import threshold_otsu

Make the image grayscale

image = color.rgb2gray(image)

Obtain the optimal thresh value of the image
thresh = threshold_otsu(image)

Apply thresholding and obtain binary image
thresholded_image = image > thresh

Find contours at a constant value of 0.8
contours = measure.find_contours(thresholded_image, 0.8)

IMAGE PROCESSING IN PYTHON

The steps to spotting contours

Resulting in
Original Thresholded Contours

IMAGE PROCESSING IN PYTHON

A contour's shape

Contours: list of (n,2) - ndarrays. Contours

for contour in contours:

print(contour.shape)

IMAGE PROCESSING IN PYTHON

A contour's shape

for contour in contours: Contours
print(contour.shape)

2)
2) --> Quter border

IMAGE PROCESSING IN PYTHON

A contour's shape

for contour in contours: Contours
print(contour.shape)

2)
2) --> Outer border
2)
2) --> Inner border
2)
2)

IMAGE PROCESSING IN PYTHON

A contour's shape

for contour in contours: Contours
print(contour.shape)

2)

2) --> Outer border

2)

2) --> Inner border

2)

2) --> Divisory line of tokens

IMAGE PROCESSING IN PYTHON

A contour's shape

for contour in contours: Contours
print(contour.shape)

2)

2) --> Outer border

2)

2) --> Inner border

2)

2) --> Divisory line of tokens

Number of dots: 7.

2) --> Dots

IMAGE PROCESSING IN PYTHON

Let's practice!

IMAGE PROCESSING IN PYTHON

