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Restore an image



IMAGE PROCESSING IN PYTHON

Image reconstruction
Fixing damaged images

Text removing

Logo removing

Object removing
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Image reconstruction
Inpainting

Reconstructing lost parts of images

Looking at the non-damaged regions
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Image reconstruction
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Image reconstruction in scikit-image
from skimage.restoration import inpaint  
 
# Obtain the mask 
mask = get_mask(defect_image)  
 
# Apply inpainting to the damaged image using the mask 
restored_image = inpaint.inpaint_biharmonic(defect_image,  
                                            mask, 
                                            multichannel=True)  
 
# Show the resulting image 
show_image(restored_image) 
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Image reconstruction in scikit-image
# Show the defect and resulting images 
show_image(defect_image, 'Image to restore') 
show_image(restored_image, 'Image restored') 
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Masks
def get_mask(image): 
    ''' Creates mask with three defect regions ''' 
    mask = np.zeros(image.shape[:-1]) 
 
    mask[101:106, 0:240] = 1 
 
    mask[152:154, 0:60] = 1 
    mask[153:155, 60:100] = 1 
    mask[154:156, 100:120] = 1 
    mask[155:156, 120:140] = 1 
 
    mask[212:217, 0:150] = 1 
    mask[217:222, 150:256] = 1 
    return mask 
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Apply noise in scikit-image
# Import the module and function 
from skimage.util import random_noise  

# Add noise to the image 
noisy_image = random_noise(dog_image)  

# Show original and resulting image 
show_image(dog_image) 
show_image(noisy_image, 'Noisy image') 
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Apply noise in scikit-image
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Reducing noise
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Denoising types
Total variation (TV)

Bilateral

Wavelet denoising

Non-local means denoising
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Denoising
Using total variation filter denoising

from skimage.restoration import denoise_tv_chambolle  

# Apply total variation filter denoising 
denoised_image = denoise_tv_chambolle(noisy_image,  
                                      weight=0.1, 
                                      multichannel=True)  

# Show denoised image 
show_image(noisy_image, 'Noisy image') 
show_image(denoised_image, 'Denoised image') 
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Denoising
Total variation filter
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Denoising
Bilateral filter

from skimage.restoration import denoise_bilateral  

# Apply bilateral filter denoising 
denoised_image = denoise_bilateral(noisy_image, multichannel=True)  

# Show original and resulting images 
show_image(noisy_image, 'Noisy image') 
show_image(denoised_image, 'Denoised image') 
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Denoising
Bilateral filter
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Image representation
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Superpixels
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Benefits of superpixels
More meaningful regions

Computational efficiency
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Segmentation
Supervised

Unsupervised
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Unsupervised segmentation
Simple Linear Iterative Clustering (SLIC)
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Unsupervised segmentation (SLIC)
# Import the modules 
from skimage.segmentation import slic 
from skimage.color import label2rgb  
 
# Obtain the segments 
segments = slic(image)  
 
# Put segments on top of original image to compare 
segmented_image = label2rgb(segments, image, kind='avg')  
 
show_image(image) 
show_image(segmented_image, "Segmented image") 
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Unsupervised segmentation (SLIC)
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More segments
# Import the modules 
from skimage.segmentation import slic 
from skimage.color import label2rgb  

# Obtain the segmentation with 300 regions 
segments = slic(image, n_segments= 300) 

# Put segments on top of original image to compare 
segmented_image = label2rgb(segments, image, kind='avg')  

show_image(segmented_image) 
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More segments
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Finding contours

Measure size

Classify shapes

Determine the number of objects

Total points in domino tokens: 29.



IMAGE PROCESSING IN PYTHON

Binary images

We can obtain a binary image applying
thresholding or using edge detection
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Find contours using scikit-image
PREPARING THE IMAGE

Transform the image to 2D grayscale.

# Make the image grayscale 
image = color.rgb2gray(image) 
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Find contours using scikit-image
PREPARING THE IMAGE

Binarize the image

# Obtain the thresh value 
thresh = threshold_otsu(image) 
 
# Apply thresholding 
thresholded_image = image > thresh 
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Find contours using scikit-image
And then use find_contours() .

# Import the measure module 
from skimage import measure 
 
# Find contours at a constant value of 0.8 
contours = measure.find_contours(thresholded_image, 0.8) 
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Constant level value
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The steps to spotting contours
from skimage import measure 
from skimage.filters import threshold_otsu 
 
# Make the image grayscale 
image = color.rgb2gray(image)  
# Obtain the optimal thresh value of the image 
thresh = threshold_otsu(image) 
 
# Apply thresholding and obtain binary image 
thresholded_image = image > thresh  
 
# Find contours at a constant value of 0.8 
contours = measure.find_contours(thresholded_image, 0.8) 
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The steps to spotting contours
Resulting in
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A contour's shape
Contours: list of (n,2) - ndarrays.

for contour in contours: 
    print(contour.shape) 

(433, 2) 
(433, 2) 
(401, 2) 
(401, 2)  
(123, 2) 
(123, 2)  
(59, 2) 
(59, 2) 
(59, 2) 
(57, 2) 
(57, 2) 
(59, 2) 
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A contour's shape
for contour in contours: 
    print(contour.shape) 

(433, 2) 
(433, 2) --> Outer border 
(401, 2) 
(401, 2) 
(123, 2) 
(123, 2) 
(59, 2) 
(59, 2) 
(59, 2) 
(57, 2) 
(57, 2) 
(59, 2) 
(59, 2)  
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A contour's shape
for contour in contours: 
    print(contour.shape) 

(433, 2) 
(433, 2) --> Outer border 
(401, 2) 
(401, 2) --> Inner border 
(123, 2) 
(123, 2)  
(59, 2) 
(59, 2) 
(59, 2) 
(57, 2) 
(57, 2) 
(59, 2) 
(59, 2)  
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A contour's shape
for contour in contours: 
    print(contour.shape) 

(433, 2) 
(433, 2) --> Outer border 
(401, 2) 
(401, 2) --> Inner border 
(123, 2) 
(123, 2) --> Divisory line of tokens 
(59, 2) 
(59, 2) 
(59, 2) 
(57, 2) 
(57, 2) 
(59, 2) 
(59, 2)  
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A contour's shape
for contour in contours: 
    print(contour.shape) 

(433, 2) 
(433, 2) --> Outer border 
(401, 2) 
(401, 2) --> Inner border 
(123, 2) 
(123, 2) --> Divisory line of tokens 
(59, 2) 
(59, 2) 
(59, 2) 
(57, 2) 
(57, 2) 
(59, 2) 
(59, 2) --> Dots  

Number of dots: 7.
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