
Image restoration
IMAGE PROCESS ING IN PYTHON

Rebeca Gonzalez
Data Engineer

IMAGE PROCESSING IN PYTHON

Restore an image

IMAGE PROCESSING IN PYTHON

Image reconstruction
Fixing damaged images

Text removing

Logo removing

Object removing

IMAGE PROCESSING IN PYTHON

Image reconstruction
Inpainting

Reconstructing lost parts of images

Looking at the non-damaged regions

IMAGE PROCESSING IN PYTHON

Image reconstruction

IMAGE PROCESSING IN PYTHON

Image reconstruction in scikit-image
from skimage.restoration import inpaint

Obtain the mask
mask = get_mask(defect_image)

Apply inpainting to the damaged image using the mask
restored_image = inpaint.inpaint_biharmonic(defect_image,
 mask,
 multichannel=True)

Show the resulting image
show_image(restored_image)

IMAGE PROCESSING IN PYTHON

Image reconstruction in scikit-image
Show the defect and resulting images
show_image(defect_image, 'Image to restore')
show_image(restored_image, 'Image restored')

IMAGE PROCESSING IN PYTHON

Masks

IMAGE PROCESSING IN PYTHON

Masks
def get_mask(image):
 ''' Creates mask with three defect regions '''
 mask = np.zeros(image.shape[:-1])

 mask[101:106, 0:240] = 1

 mask[152:154, 0:60] = 1
 mask[153:155, 60:100] = 1
 mask[154:156, 100:120] = 1
 mask[155:156, 120:140] = 1

 mask[212:217, 0:150] = 1
 mask[217:222, 150:256] = 1
 return mask

Let's practice!
IMAGE PROCESS ING IN PYTHON

Noise
IMAGE PROCESS ING IN PYTHON

Rebeca Gonzalez
Data Engineer

IMAGE PROCESSING IN PYTHON

Noise

IMAGE PROCESSING IN PYTHON

Noise

IMAGE PROCESSING IN PYTHON

Apply noise in scikit-image
Import the module and function
from skimage.util import random_noise

Add noise to the image
noisy_image = random_noise(dog_image)

Show original and resulting image
show_image(dog_image)
show_image(noisy_image, 'Noisy image')

IMAGE PROCESSING IN PYTHON

Apply noise in scikit-image

IMAGE PROCESSING IN PYTHON

Reducing noise

IMAGE PROCESSING IN PYTHON

Denoising types
Total variation (TV)

Bilateral

Wavelet denoising

Non-local means denoising

IMAGE PROCESSING IN PYTHON

Denoising
Using total variation filter denoising

from skimage.restoration import denoise_tv_chambolle

Apply total variation filter denoising
denoised_image = denoise_tv_chambolle(noisy_image,
 weight=0.1,
 multichannel=True)

Show denoised image
show_image(noisy_image, 'Noisy image')
show_image(denoised_image, 'Denoised image')

IMAGE PROCESSING IN PYTHON

Denoising
Total variation filter

IMAGE PROCESSING IN PYTHON

Denoising
Bilateral filter

from skimage.restoration import denoise_bilateral

Apply bilateral filter denoising
denoised_image = denoise_bilateral(noisy_image, multichannel=True)

Show original and resulting images
show_image(noisy_image, 'Noisy image')
show_image(denoised_image, 'Denoised image')

IMAGE PROCESSING IN PYTHON

Denoising
Bilateral filter

Let's practice!
IMAGE PROCESS ING IN PYTHON

Superpixels &
segmentation

IMAGE PROCESS ING IN PYTHON

Rebeca Gonzalez
Data Engineer

IMAGE PROCESSING IN PYTHON

Segmentation

IMAGE PROCESSING IN PYTHON

Segmentation

IMAGE PROCESSING IN PYTHON

Image representation

IMAGE PROCESSING IN PYTHON

Superpixels

IMAGE PROCESSING IN PYTHON

Benefits of superpixels
More meaningful regions

Computational efficiency

IMAGE PROCESSING IN PYTHON

Segmentation
Supervised

Unsupervised

IMAGE PROCESSING IN PYTHON

Unsupervised segmentation
Simple Linear Iterative Clustering (SLIC)

IMAGE PROCESSING IN PYTHON

Unsupervised segmentation (SLIC)
Import the modules
from skimage.segmentation import slic
from skimage.color import label2rgb

Obtain the segments
segments = slic(image)

Put segments on top of original image to compare
segmented_image = label2rgb(segments, image, kind='avg')

show_image(image)
show_image(segmented_image, "Segmented image")

IMAGE PROCESSING IN PYTHON

Unsupervised segmentation (SLIC)

IMAGE PROCESSING IN PYTHON

More segments
Import the modules
from skimage.segmentation import slic
from skimage.color import label2rgb

Obtain the segmentation with 300 regions
segments = slic(image, n_segments= 300)

Put segments on top of original image to compare
segmented_image = label2rgb(segments, image, kind='avg')

show_image(segmented_image)

IMAGE PROCESSING IN PYTHON

More segments

Let's practice!
IMAGE PROCESS ING IN PYTHON

Finding contours
IMAGE PROCESS ING IN PYTHON

Rebeca Gonzalez
Data Engineer

IMAGE PROCESSING IN PYTHON

Finding contours

Measure size

Classify shapes

Determine the number of objects

Total points in domino tokens: 29.

IMAGE PROCESSING IN PYTHON

Binary images

We can obtain a binary image applying
thresholding or using edge detection

IMAGE PROCESSING IN PYTHON

Find contours using scikit-image
PREPARING THE IMAGE

Transform the image to 2D grayscale.

Make the image grayscale
image = color.rgb2gray(image)

IMAGE PROCESSING IN PYTHON

Find contours using scikit-image
PREPARING THE IMAGE

Binarize the image

Obtain the thresh value
thresh = threshold_otsu(image)

Apply thresholding
thresholded_image = image > thresh

IMAGE PROCESSING IN PYTHON

Find contours using scikit-image
And then use find_contours() .

Import the measure module
from skimage import measure

Find contours at a constant value of 0.8
contours = measure.find_contours(thresholded_image, 0.8)

IMAGE PROCESSING IN PYTHON

Constant level value

IMAGE PROCESSING IN PYTHON

The steps to spotting contours
from skimage import measure
from skimage.filters import threshold_otsu

Make the image grayscale
image = color.rgb2gray(image)
Obtain the optimal thresh value of the image
thresh = threshold_otsu(image)

Apply thresholding and obtain binary image
thresholded_image = image > thresh

Find contours at a constant value of 0.8
contours = measure.find_contours(thresholded_image, 0.8)

IMAGE PROCESSING IN PYTHON

The steps to spotting contours
Resulting in

IMAGE PROCESSING IN PYTHON

A contour's shape
Contours: list of (n,2) - ndarrays.

for contour in contours:
 print(contour.shape)

(433, 2)
(433, 2)
(401, 2)
(401, 2)
(123, 2)
(123, 2)
(59, 2)
(59, 2)
(59, 2)
(57, 2)
(57, 2)
(59, 2)

IMAGE PROCESSING IN PYTHON

A contour's shape
for contour in contours:
 print(contour.shape)

(433, 2)
(433, 2) --> Outer border
(401, 2)
(401, 2)
(123, 2)
(123, 2)
(59, 2)
(59, 2)
(59, 2)
(57, 2)
(57, 2)
(59, 2)
(59, 2)

IMAGE PROCESSING IN PYTHON

A contour's shape
for contour in contours:
 print(contour.shape)

(433, 2)
(433, 2) --> Outer border
(401, 2)
(401, 2) --> Inner border
(123, 2)
(123, 2)
(59, 2)
(59, 2)
(59, 2)
(57, 2)
(57, 2)
(59, 2)
(59, 2)

IMAGE PROCESSING IN PYTHON

A contour's shape
for contour in contours:
 print(contour.shape)

(433, 2)
(433, 2) --> Outer border
(401, 2)
(401, 2) --> Inner border
(123, 2)
(123, 2) --> Divisory line of tokens
(59, 2)
(59, 2)
(59, 2)
(57, 2)
(57, 2)
(59, 2)
(59, 2)

IMAGE PROCESSING IN PYTHON

A contour's shape
for contour in contours:
 print(contour.shape)

(433, 2)
(433, 2) --> Outer border
(401, 2)
(401, 2) --> Inner border
(123, 2)
(123, 2) --> Divisory line of tokens
(59, 2)
(59, 2)
(59, 2)
(57, 2)
(57, 2)
(59, 2)
(59, 2) --> Dots

Number of dots: 7.

Let's practice!
IMAGE PROCESS ING IN PYTHON

