
Make images come
alive with scikit-

image
IMAGE PROCESS ING IN PYTHON

Rebeca Gonzalez
Data Engineer

IMAGE PROCESSING IN PYTHON

What is image processing?
Operations on images and videos to:

Enhance an image

Extract useful information

Analyze it and make decisions

IMAGE PROCESSING IN PYTHON

What is image processing?
Operations to on images and videos to:

Enhance an image

Extract useful information

Analyze it and make decisions

IMAGE PROCESSING IN PYTHON

Applications
Medical image analysis

Artificial intelligence

Image restoration and enhancement

Geospatial computing

Surveillance

Robotic vision

Automotive safety

And many more...

IMAGE PROCESSING IN PYTHON

Purposes
1. Visualization:

Objects that are not visible

2. Image sharpening and restoration
A better image

3. Image retrieval
Seek for the image of interest

4. Measurement of pattern
Measures various objects

5. Image Recognition
Distinguish objects in an image

IMAGE PROCESSING IN PYTHON

Intro to scikit-image
Easy to use

Makes use of Machine Learning

Out of the box complex algorithms

IMAGE PROCESSING IN PYTHON

What is an image?

IMAGE PROCESSING IN PYTHON

What is an image?

IMAGE PROCESSING IN PYTHON

Images in scikit-image
from skimage import data
rocket_image = data.rocket()

IMAGE PROCESSING IN PYTHON

RGB channels

IMAGE PROCESSING IN PYTHON

Grayscaled images

IMAGE PROCESSING IN PYTHON

RGB vs Grayscale
from skimage import color
grayscale = color.rgb2gray(original)
rgb = color.gray2rgb(grayscale)

IMAGE PROCESSING IN PYTHON

Visualizing images in the course
Don't worry about Matplotlib!

def show_image(image, title='Image', cmap_type='gray'):
 plt.imshow(image, cmap=cmap_type)
 plt.title(title)
 plt.axis('off')
 plt.show()

IMAGE PROCESSING IN PYTHON

Visualizing images in the course
from skimage import color
grayscale = color.rgb2gray(original)

show_image(grayscale, "Grayscale")

Let's practice!
IMAGE PROCESS ING IN PYTHON

NumPy for images
IMAGE PROCESS ING IN PYTHON

Rebeca Gonzalez
Data Engineer

IMAGE PROCESSING IN PYTHON

NumPy for images
Fundamentals of image processing
techniques

Flipping

Extract and analyze features

IMAGE PROCESSING IN PYTHON

Images as NdArrays

Loading the image using Matplotlib
madrid_image = plt.imread('/madrid.jpeg')

type(madrid_image)

<class 'numpy.ndarray'>

IMAGE PROCESSING IN PYTHON

Colors with NumPy

IMAGE PROCESSING IN PYTHON

Colors with NumPy
Obtaining the red values of the image
red = image[:, :, 0]

Obtaining the green values of the image
green = image[:, :, 1]

Obtaining the blue values of the image
blue = image[:, :, 2]

IMAGE PROCESSING IN PYTHON

Colors with NumPy

plt.imshow(red, cmap="gray")
plt.title('Red')
plt.axis('off')
plt.show()

IMAGE PROCESSING IN PYTHON

Shapes

Accessing the shape of the image
madrid_image.shape

(426, 640, 3)

IMAGE PROCESSING IN PYTHON

Sizes

Accessing the shape of the image
madrid_image.size

817920

IMAGE PROCESSING IN PYTHON

Flipping images: vertically
Flip the image in up direction
vertically_flipped = np.flipud(madrid_image)

show_image(vertically_flipped, 'Vertically flipped image')

IMAGE PROCESSING IN PYTHON

Flipping images: horizontally
Flip the image in left direction
horizontally_flipped = np.fliplr(madrid_image)

show_image(horizontally_flipped, 'Horizontally flipped image')

IMAGE PROCESSING IN PYTHON

What is a histogram?

IMAGE PROCESSING IN PYTHON

Color histograms

IMAGE PROCESSING IN PYTHON

Applications of histograms
Analysis

Thresholding

Brightness and contrast

Equalize an image

IMAGE PROCESSING IN PYTHON

Histograms in Matplotlib

Red color of the image
red = image[:, :, 0]

Obtain the red histogram
plt.hist(red.ravel(), bins=256)

IMAGE PROCESSING IN PYTHON

Visualizing histograms with Matplotlib
blue = image[:, :, 2]

plt.hist(blue.ravel(), bins=256)
plt.title('Blue Histogram')
plt.show()

Let's practice!
IMAGE PROCESS ING IN PYTHON

Getting started with
thresholding

IMAGE PROCESS ING IN PYTHON

Rebeca Gonzalez
Data Engineer

IMAGE PROCESSING IN PYTHON

Thresholding
Partitioning an image into a foreground and
background

By making it black and white

We do so by setting each pixel to:

255 (white) if pixel > thresh value

0 (black) if pixel < thresh value

IMAGE PROCESSING IN PYTHON

Thresholding
Simplest method of image segmentation

Isolate objects
Object detection

Face detection

Etc.

IMAGE PROCESSING IN PYTHON

Thresholding
Only from grayscale images

IMAGE PROCESSING IN PYTHON

Apply it
Obtain the optimal threshold value
thresh = 127

Apply thresholding to the image
binary = image > thresh

Show the original and thresholded
show_image(image, 'Original')
show_image(binary, 'Thresholded')

IMAGE PROCESSING IN PYTHON

Inverted thresholding
Obtain the optimal threshold value
thresh = 127

Apply thresholding to the image
inverted_binary = image <= thresh

Show the original and thresholded
show_image(image, 'Original')
show_image(inverted_binary,
 'Inverted thresholded')

IMAGE PROCESSING IN PYTHON

Categories
Global or histogram based: good for uniform backgrounds

Local or adaptive: for uneven background illumination

IMAGE PROCESSING IN PYTHON

Try more thresholding algorithms
from skimage.filters import try_all_threshold

Obtain all the resulting images
fig, ax = try_all_threshold(image, verbose=False)

Showing resulting plots
show_plot(fig, ax)

IMAGE PROCESSING IN PYTHON

Try more thresholding algorithms

IMAGE PROCESSING IN PYTHON

Optimal thresh value
Global

Uniform background

Import the otsu threshold function
from skimage.filters import threshold_otsu

Obtain the optimal threshold value
thresh = threshold_otsu(image)

Apply thresholding to the image
binary_global = image > thresh

IMAGE PROCESSING IN PYTHON

Optimal thresh value
Global

Show the original and binarized image
show_image(image, 'Original')
show_image(binary_global, 'Global thresholding')

IMAGE PROCESSING IN PYTHON

Optimal thresh value
Local

Uneven background

Import the local threshold function
from skimage.filters import threshold_local

Set the block size to 35
block_size = 35

Obtain the optimal local thresholding
local_thresh = threshold_local(text_image, block_size, offset=10)

Apply local thresholding and obtain the binary image
binary_local = text_image > local_thresh

IMAGE PROCESSING IN PYTHON

Optimal thresh value
Local

Show the original and binarized image
show_image(text_image, 'Original')
show_image(binary_local, 'Local thresholding')

Let's practice!
IMAGE PROCESS ING IN PYTHON

