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What is image processing?
Operations on images and videos to:

Enhance an image

Extract useful information

Analyze it and make decisions
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Applications
Medical image analysis

Artificial intelligence

Image restoration and enhancement

Geospatial computing

Surveillance

Robotic vision

Automotive safety

And many more...
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Purposes
1. Visualization:

Objects that are not visible

2. Image sharpening and restoration
A better image

3. Image retrieval
Seek for the image of interest

4. Measurement of pattern
Measures various objects

5. Image Recognition
Distinguish objects in an image
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Intro to scikit-image
Easy to use

Makes use of Machine Learning

Out of the box complex algorithms
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What is an image?
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What is an image?
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Images in scikit-image
from skimage import data  
rocket_image = data.rocket() 
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RGB channels
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Grayscaled images



IMAGE PROCESSING IN PYTHON

RGB vs Grayscale
from skimage import color 
grayscale = color.rgb2gray(original)  
rgb = color.gray2rgb(grayscale) 
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Visualizing images in the course
Don't worry about Matplotlib!

def show_image(image, title='Image', cmap_type='gray'): 
    plt.imshow(image, cmap=cmap_type)     
    plt.title(title) 
    plt.axis('off') 
    plt.show() 
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Visualizing images in the course
from skimage import color 
grayscale = color.rgb2gray(original) 

show_image(grayscale, "Grayscale") 
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NumPy for images
Fundamentals of image processing
techniques

Flipping

Extract and analyze features
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Images as NdArrays

# Loading the image using Matplotlib 
madrid_image = plt.imread('/madrid.jpeg') 
 
type(madrid_image) 

<class 'numpy.ndarray'> 
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Colors with NumPy
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Colors with NumPy
# Obtaining the red values of the image 
red = image[:, :, 0] 
 
# Obtaining the green values of the image 
green = image[:, :, 1] 
 
# Obtaining the blue values of the image 
blue = image[:, :, 2] 
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Colors with NumPy

plt.imshow(red, cmap="gray")     
plt.title('Red') 
plt.axis('off') 
plt.show() 
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Shapes

# Accessing the shape of the image 
madrid_image.shape 

(426, 640, 3) 
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Sizes

# Accessing the shape of the image 
madrid_image.size 

817920 
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Flipping images: vertically
# Flip the image in up direction 
vertically_flipped = np.flipud(madrid_image) 

show_image(vertically_flipped, 'Vertically flipped image') 
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Flipping images: horizontally
# Flip the image in left direction 
horizontally_flipped = np.fliplr(madrid_image) 

show_image(horizontally_flipped, 'Horizontally flipped image') 
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What is a histogram?
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Color histograms
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Applications of histograms
Analysis

Thresholding

Brightness and contrast

Equalize an image
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Histograms in Matplotlib

# Red color of the image 
red = image[:, :, 0]  
 
# Obtain the red histogram 
plt.hist(red.ravel(), bins=256) 
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Visualizing histograms with Matplotlib
blue = image[:, :, 2] 
 
plt.hist(blue.ravel(), bins=256) 
plt.title('Blue Histogram') 
plt.show() 
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Thresholding
Partitioning an image into a foreground and
background

By making it black and white

We do so by setting each pixel to:

255 (white) if pixel > thresh value

0 (black) if pixel < thresh value
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Thresholding
Simplest method of image segmentation

Isolate objects
Object detection

Face detection

Etc.
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Thresholding
Only from grayscale images
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Apply it
# Obtain the optimal threshold value 
thresh = 127  

# Apply thresholding to the image 
binary = image > thresh  

# Show the original and thresholded 
show_image(image, 'Original') 
show_image(binary, 'Thresholded') 
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Inverted thresholding
# Obtain the optimal threshold value 
thresh = 127  

# Apply thresholding to the image 
inverted_binary = image <= thresh  

# Show the original and thresholded 
show_image(image, 'Original') 
show_image(inverted_binary,  
           'Inverted thresholded') 



IMAGE PROCESSING IN PYTHON

Categories
Global or histogram based: good for uniform backgrounds

Local or adaptive: for uneven background illumination
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Try more thresholding algorithms
from skimage.filters import try_all_threshold  

# Obtain all the resulting images 
fig, ax = try_all_threshold(image, verbose=False)  

# Showing resulting plots 
show_plot(fig, ax) 
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Try more thresholding algorithms
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Optimal thresh value
Global

Uniform background

# Import the otsu threshold function 
from skimage.filters import threshold_otsu  
 
# Obtain the optimal threshold value 
thresh = threshold_otsu(image)  
 
# Apply thresholding to the image 
binary_global = image > thresh 
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Optimal thresh value
Global

# Show the original and binarized image 
show_image(image, 'Original') 
show_image(binary_global, 'Global thresholding') 
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Optimal thresh value
Local

Uneven background

# Import the local threshold function 
from skimage.filters import threshold_local 
 
# Set the block size to 35 
block_size = 35  
 
# Obtain the optimal local thresholding 
local_thresh = threshold_local(text_image, block_size, offset=10)  
 
# Apply local thresholding and obtain the binary image 
binary_local = text_image > local_thresh 
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Optimal thresh value
Local

# Show the original and binarized image 
show_image(text_image, 'Original') 
show_image(binary_local, 'Local thresholding') 
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