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n-gram modeling
Weight of dimension dependent on the frequency of the word corresponding to the
dimension.

Document contains the word human  in five places.

Dimension corresponding to human  has weight 5 .
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Motivation
Some words occur very commonly across all documents

Corpus of documents on the universe
One document has jupiter  and universe  occurring 20 times each.

jupiter  rarely occurs in the other documents. universe  is common.

Give more weight to jupiter  on account of exclusivity.
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Applications
Automatically detect stopwords

Search

Recommender systems

Better performance in predictive modeling for some cases
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Term frequency-inverse document frequency
Proportional to term frequency

Inverse function of the number of documents in which it occurs
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Mathematical formula

w = tf ⋅ log

w → weight of term i in document j
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Mathematical formula

w = tf ⋅ log

w → weight of term i in document j

tf → term frequency of term i in document j

N → number of documents in the corpus

df → number of documents cotaining term i

Example:

w = 5 ⋅ log( ) ≈ 2

i,j i,j (
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N
)
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i,j

i

library,document 8
20



FEATURE ENGINEERING FOR NLP IN PYTHON

tf-idf using scikit-learn
# Import TfidfVectorizer 
from sklearn.feature_extraction.text import TfidfVectorizer  
# Create TfidfVectorizer object 
vectorizer = TfidfVectorizer()  
# Generate matrix of word vectors 
tfidf_matrix = vectorizer.fit_transform(corpus) 
print(tfidf_matrix.toarray()) 

[[0.         0.         0.         0.         0.25434658 0.33443519 
  0.33443519 0.         0.25434658 0.         0.25434658 0. 
  0.76303975] 
 [0.         0.46735098 0.         0.46735098 0.         0. 
  0.         0.46735098 0.         0.46735098 0.35543247 0. 
  0.        ] 
... 
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The dot product
Consider two vectors,

V = (v , v , ⋯ , v ),W = (w ,w , ⋯ ,w )

Then the dot product of V and W is,

V ⋅ W = (v × w ) + (v × w ) + ⋯ + (v × w )

Example:

A = (4, 7, 1) , B = (5, 2, 3)

A ⋅ B = (4 × 5) + (7 × 2) + ⋯ (1 × 3)

= 20 + 14 + 3 = 37A ⋅ Bd

1 2 n 1 2 n

1 1 2 2 n n
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Magnitude of a vector
For any vector,

V = (v , v , ⋯ , v )

The magnitude is defined as,

∣∣V∣∣ =

Example:

A = (4, 7, 1) , B = (5, 2, 3)

∣∣A∣∣ =

filler = =

1 2 n

√(v ) + (v ) + ... + (v )1 2 2 2
n

2
 

√(4) + (7) + (1)2 2 2
 

√16 + 49 + 1
 

√66
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The cosine score
A : (4, 7, 1)

B : (5, 2, 3)

The cosine score,

cos(A,B) =

fillerslorem =

fillersl = 0.7388

∣A∣ ⋅ ∣B∣
A ⋅ B

 ×√ 66
 

√ 38
   37
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Cosine Score: points to remember
Value between -1 and 1.

In NLP, value between 0 and 1.

Robust to document length.
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Implementation using scikit-learn
# Import the cosine_similarity 
from sklearn.metrics.pairwise import cosine_similarity 

# Define two 3-dimensional vectors A and B 
A = (4,7,1) 
B = (5,2,3) 
 
# Compute the cosine score of A and B 
score = cosine_similarity([A], [B]) 
 
# Print the cosine score 
print(score) 

array([[ 0.73881883]]) 
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Movie recommender
Title Overview

Shanghai
Triad

A provincial boy related to a Shanghai crime family is recruited by his uncle
into cosmopolitan Shanghai in the 1930s to be a servant to a ganglord's
mistress.

Cry, the
Beloved
Country

A South-African preacher goes to search for his wayward son who has
committed a crime in the big city.
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Movie recommender
get_recommendations("The Godfather") 

1178               The Godfather: Part II 
44030    The Godfather Trilogy: 1972-1990 
1914              The Godfather: Part III 
23126                          Blood Ties 
11297                    Household Saints 
34717                   Start Liquidation 
10821                            Election 
38030                          Goodfellas 
17729                   Short Sharp Shock 
26293                  Beck 28 - Familjen 
Name: title, dtype: object 
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Steps
1. Text preprocessing

2. Generate tf-idf vectors

3. Generate cosine similarity matrix
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The recommender function
1. Take a movie title, cosine similarity matrix and indices series as arguments.

2. Extract pairwise cosine similarity scores for the movie.

3. Sort the scores in descending order.

4. Output titles corresponding to the highest scores.

5. Ignore the highest similarity score (of 1).
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Generating tf-idf vectors
# Import TfidfVectorizer 
from sklearn.feature_extraction.text import TfidfVectorizer 
 
# Create TfidfVectorizer object 
vectorizer = TfidfVectorizer() 
 
# Generate matrix of tf-idf vectors 
tfidf_matrix = vectorizer.fit_transform(movie_plots) 
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Generating cosine similarity matrix
# Import cosine_similarity 
from sklearn.metrics.pairwise import cosine_similarity 
 
# Generate cosine similarity matrix 
cosine_sim = cosine_similarity(tfidf_matrix, tfidf_matrix) 

array([[1.        , 0.27435345, 0.23092036, ..., 0.        , 0.        , 
        0.00758112], 
       [0.27435345, 1.        , 0.1246955 , ..., 0.        , 0.        , 
        0.00740494], 
       ..., 
       [0.00758112, 0.00740494, 0.        , ..., 0.        , 0.        , 
        1.        ]]) 
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The linear_kernel function
Magnitude of a tf-idf vector is 1

Cosine score between two tf-idf vectors is their dot product.

Can significantly improve computation time.

Use linear_kernel  instead of cosine_similarity .
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Generating cosine similarity matrix
# Import cosine_similarity 
from sklearn.metrics.pairwise import linear_kernel 
 
# Generate cosine similarity matrix 
cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix) 

array([[1.        , 0.27435345, 0.23092036, ..., 0.        , 0.        , 
        0.00758112], 
       [0.27435345, 1.        , 0.1246955 , ..., 0.        , 0.        , 
        0.00740494], 
       ..., 
       [0.00758112, 0.00740494, 0.        , ..., 0.        , 0.        , 
        1.        ]]) 
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The get_recommendations function
get_recommendations('The Lion King', cosine_sim, indices)

7782                      African Cats 
5877    The Lion King 2: Simba's Pride 
4524                         Born Free 
2719                          The Bear 
4770     Once Upon a Time in China III 
7070                        Crows Zero 
739                   The Wizard of Oz 
8926                   The Jungle Book 
1749                 Shadow of a Doubt 
7993                      October Baby 
Name: title, dtype: object 
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The problem with BoW and tf-idf
'I am happy' 

'I am joyous' 

'I am sad' 
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Word embeddings
Mapping words into an n-dimensional vector space

Produced using deep learning and huge amounts of data

Discern how similar two words are to each other

Used to detect synonyms and antonyms

Captures complex relationships
King - Queen  → Man - Woman

France - Paris  → Russia - Moscow

Dependent on spacy model; independent of dataset you use
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Word embeddings using spaCy
import spacy 
 
# Load model and create Doc object 
nlp = spacy.load('en_core_web_lg') 
doc = nlp('I am happy') 

# Generate word vectors for each token 
for token in doc: 
  print(token.vector) 

[-1.0747459e+00  4.8677087e-02  5.6630421e+00  1.6680446e+00 
 -1.3194644e+00 -1.5142369e+00  1.1940931e+00 -3.0168812e+00 
 ... 
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Word similarities
doc = nlp("happy joyous sad") 
for token1 in doc: 
  for token2 in doc: 
    print(token1.text, token2.text, token1.similarity(token2)) 

happy happy 1.0 
happy joyous 0.63244456 
happy sad 0.37338886 
joyous happy 0.63244456 
joyous joyous 1.0 
joyous sad 0.5340932 
... 
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Document similarities
# Generate doc objects 
sent1 = nlp("I am happy") 
sent2 = nlp("I am sad") 
sent3 = nlp("I am joyous") 

# Compute similarity between sent1 and sent2 
sent1.similarity(sent2) 

0.9273363837282105 

# Compute similarity between sent1 and sent3 
sent1.similarity(sent3) 

0.9403554938594568 
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Review
Basic features (characters, words, mentions, etc.)

Readability scores

Tokenization and lemmatization

Text cleaning

Part-of-speech tagging & named entity recognition

n-gram modeling

tf-idf

Cosine similarity

Word embeddings
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Further resources
Advanced NLP with spaCy

Deep Learning in Python

https://www.datacamp.com/courses/advanced-nlp-with-spacy
https://www.datacamp.com/courses/deep-learning-in-python
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