Building tf-idf document vectors

FEATURE ENGINEERING FOR NLP IN PYTHON

Rounak Banik Data Scientist

n-gram modeling

- Weight of dimension dependent on the frequency of the word corresponding to the \bullet dimension.
 - Document contains the word human in five places. 0
 - Dimension corresponding to human has weight 5. 0

Motivation

- Some words occur very commonly across all documents
- Corpus of documents on the universe
 - One document has jupiter and universe occurring 20 times each. 0
 - jupiter rarely occurs in the other documents. universe is common. 0
 - Give more weight to jupiter on account of exclusivity. 0

Applications

- Automatically detect stopwords
- Search
- Recommender systems
- Better performance in predictive modeling for some cases \bullet

Term frequency-inverse document frequency

- Proportional to term frequency
- Inverse function of the number of documents in which it occurs

$$oldsymbol{w}_{i,j} = t f_{i,j} \cdot \log\left(rac{N}{df_i}
ight)$$

 $w_{i,j} \rightarrow ext{weight of term } i ext{ in document } j$

$$w_{i,j} = t f_{i,j} \cdot \log\left(rac{N}{df_i}
ight)$$

 $w_{i,j}
ightarrow ext{weight of term } i ext{ in document } j$

 $tf_{i,j} \rightarrow ext{term frequency of term } i ext{ in document } j$

$$w_{i,j} = t f_{i,j} \cdot \log\left(rac{N}{df_i}
ight)$$

 $w_{i,j} \rightarrow \text{weight of term } i \text{ in document } j$

 $tf_{i,j} \rightarrow \text{term frequency of term } i \text{in document } j$

 $N \rightarrow$ number of documents in the corpus

 $df_i \rightarrow$ number of documents containing term i

$$w_{i,j} = t f_{i,j} \cdot \log\left(rac{N}{df_i}
ight)$$

 $w_{i,j} \rightarrow \text{weight of term } i \text{ in document } j$

 $tf_{i,j} \rightarrow term \ frequency \ of \ term \ i \ in \ document \ j$

 $N \rightarrow number \ of \ documents \ in \ the \ corpus$

 $df_i \rightarrow number \ of \ documents \ cotaining \ term \ i$

Example:

$$w_{library,document} = 5 \cdot log(rac{20}{8}) pprox 2$$

tf-idf using scikit-learn

Import TfidfVectorizer
<pre>from sklearn.feature_extraction.text import TfidfVectorizer</pre>
Create TfidfVectorizer object
vectorizer = TfidfVectorizer()
Generate matrix of word vectors
tfidf_matrix = vectorizer.fit_transform(corpus)
<pre>print(tfidf_matrix.toarray())</pre>

[[0.	0.	0.	0.	0.25434658	0.33443519
0.33443519	0.	0.25434658	0.	0.25434658	0.
0.76303975]				
[0.	0.46735098	0.	0.46735098	0.	0.
0.	0.46735098	0.	0.46735098	0.35543247	0.
0.]				
•••					

R datacamp

Let's practice!

Cosine similarity FEATURE ENGINEERING FOR NLP IN PYTHON

Rounak Banik Data Scientist

Cosine Similarity

¹ Image courtesy techninpink.com

& datacamp

The dot product

Consider two vectors,

$$V=(v_1,v_2,\cdots,v_n), W=(w_1,w_2,\cdots,w_n)$$

Then the dot product of V and W is,

$$V\cdot W = (v_1 imes w_1) + (v_2 imes w_2) + \dots + (v_n imes w_n)$$

Example:

tacamp

$$egin{aligned} A &= (4,7,1) \;,\; B = (5,2,3) \ A \cdot B &= (4 imes 5) + (7 imes 2) + \cdots (1 imes 3) \ &= 20 + 14 + 3 = 37 \end{aligned}$$

FEATURE ENGINEERING FOR NLP IN PYTHON

A (4, 7, 1)

B (5, 2, 3)

Magnitude of a vector

For any vector,

$$V=(v_1,v_2,\cdots,v_n)$$

The magnitude is defined as,

$$||\mathbf{V}|| = \sqrt{(v_1)^2 + (v_2)^2 + ... + (v_n)^2}$$

Example:

$$egin{aligned} A &= (4,7,1) \;, \; B = (5,2,3) \ &||\mathbf{A}|| = \sqrt{(4)^2 + (7)^2 + (1)^2} \ &= \sqrt{16 + 49 + 1} = \sqrt{66} \end{aligned}$$

R datacamp

FEATURE ENGINEERING FOR NLP IN PYTHON

B (5, 2, 3)

A (4, 7, 1)

The cosine score

Cosine Score: points to remember

- Value between -1 and 1.
- In NLP, value between 0 and 1.
- Robust to document length.

Implementation using scikit-learn

Import the cosine_similarity

from sklearn.metrics.pairwise **import** cosine_similarity

```
# Define two 3-dimensional vectors A and B
A = (4, 7, 1)
B = (5, 2, 3)
```

Compute the cosine score of A and B score = cosine_similarity([A], [B])

```
# Print the cosine score
print(score)
```

array([[0.73881883]])

Let's practice!

Building a plot line based recommender

FEATURE ENGINEERING FOR NLP IN PYTHON

Rounak Banik Data Scientist

Movie recommender

Title	Overview
Shanghai Triad	A provincial boy related to a Shanghai crime family is red into cosmopolitan Shanghai in the 1930s to be a servant mistress.
Cry, the Beloved Country	A South-African preacher goes to search for his wayward committed a crime in the big city.

cruited by his uncle to a ganglord's

d son who has

Movie recommender

get_recommendations("The Godfather")

1178	The Godfather: Part II
44030	The Godfather Trilogy: 1972–1990
1914	The Godfather: Part III
23126	Blood Ties
11297	Household Saints
34717	Start Liquidation
10821	Election
38030	Goodfellas
17729	Short Sharp Shock
26293	Beck 28 – Familjen
Name:	title, dtvpe: object

Steps

- 1. Text preprocessing
- 2. Generate tf-idf vectors
- 3. Generate cosine similarity matrix

The recommender function

- 1. Take a movie title, cosine similarity matrix and indices series as arguments.
- 2. Extract pairwise cosine similarity scores for the movie.
- 3. Sort the scores in descending order.
- 4. Output titles corresponding to the highest scores.
- 5. Ignore the highest similarity score (of 1).

Generating tf-idf vectors

Import TfidfVectorizer

from sklearn.feature_extraction.text import TfidfVectorizer

```
# Create TfidfVectorizer object
vectorizer = TfidfVectorizer()
```

Generate matrix of tf-idf vectors tfidf_matrix = vectorizer.fit_transform(movie_plots)

Generating cosine similarity matrix

Import cosine_similarity

from sklearn.metrics.pairwise import cosine_similarity

```
# Generate cosine similarity matrix
```

cosine_sim = cosine_similarity(tfidf_matrix, tfidf_matrix)

array([[1.	, 0.27435345,	0.23092036	5,,	0.	, 0.	,
0.00758112	2],					
[0.27435345	5,1.,	0.1246955	,,	0.	, 0.	,
0.00740494	i],					
•••,						
[0.00758112	2, 0.00740494,	0.	,,	0.	, 0.	,
1.]])					

The linear_kernel function

- Magnitude of a tf-idf vector is 1
- Cosine score between two tf-idf vectors is their dot product.
- Can significantly improve computation time.
- Use linear_kernel instead of cosine_similarity.

Generating cosine similarity matrix

Import cosine_similarity

from sklearn.metrics.pairwise import linear_kernel

```
# Generate cosine similarity matrix
```

cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)

array([[1.	, 0.27435345,	0.23092036),,	0.	, 0.	,
0.00758112],					
[0.27435345	, 1. ,	0.1246955	,,	0.	, 0.	,
0.00740494],					
•••,						
[0.00758112	, 0.00740494,	0.	,,	0.	, 0.	,
1.]])					

The get_recommendations function

get_recommendations('The Lion King', cosine_sim, indices)

7782	African Cats
5877	The Lion King 2: Simba's Pride
4524	Born Free
2719	The Bear
4770	Once Upon a Time in China III
7070	Crows Zero
739	The Wizard of Oz
8926	The Jungle Book
1749	Shadow of a Doubt
7993	October Baby
Name:	title, dtype: object

Let's practice!

Beyond n-grams: word embeddings

FEATURE ENGINEERING FOR NLP IN PYTHON

Rounak Banik Data Scientist

The problem with BoW and tf-idf

'I am happy'

'I am joyous'

'I am sad'

Word embeddings

- Mapping words into an n-dimensional vector space \bullet
- Produced using deep learning and huge amounts of data
- Discern how similar two words are to each other
- Used to detect synonyms and antonyms
- Captures complex relationships
 - King Queen \rightarrow Man Woman 0
 - France Paris → Russia Moscow 0
- Dependent on spacy model; independent of dataset you use

Word embeddings using spaCy

import spacy

```
# Load model and create Doc object
nlp = spacy.load('en_core_web_lg')
doc = nlp('I am happy')
```

```
# Generate word vectors for each token
for token in doc:
    print(token.vector)
```

[-1.0747459e+00 4.8677087e-02 5.6630421e+00 1.6680446e+00 -1.3194644e+00 -1.5142369e+00 1.1940931e+00 -3.0168812e+00

• • •

Word similarities

doc = nlp("happy joyous sad")
for token1 in doc:
 for token2 in doc:
 print(token1.text, token2.text, token1.similarity(token2))

happy happy 1.0 happy joyous 0.63244456 happy sad 0.37338886 joyous happy 0.63244456 joyous joyous 1.0 joyous sad 0.5340932

& datacamp

• • •

Document similarities

```
# Generate doc objects
sent1 = nlp("I am happy")
sent2 = nlp("I am sad")
sent3 = nlp("I am joyous")
```

Compute similarity between sent1 and sent2
sent1.similarity(sent2)

0.9273363837282105

Compute similarity between sent1 and sent3
sent1.similarity(sent3)

0.9403554938594568

Let's practice!

Congratulations!

FEATURE ENGINEERING FOR NLP IN PYTHON

Rounak Banik Data Scientist

Review

- Basic features (characters, words, mentions, etc.)
- Readability scores
- Tokenization and lemmatization
- Text cleaning
- Part-of-speech tagging & named entity recognition
- n-gram modeling
- tf-idf
- Cosine similarity
- Word embeddings

Further resources

- Advanced NLP with spaCy
- Deep Learning in Python

Thank you! FEATURE ENGINEERING FOR NLP IN PYTHON

