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n-gram modeling

e Weight of dimension dependent on the frequency of the word corresponding to the
dimension.

o Document contains the word human in five places.

o Dimension corresponding to human has weight 5 .
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Motivation

e Some words occur very commonly across all documents

e Corpus of documents on the universe
o One document has jupiter and universe occurring 20 times each.

o jupiter rarely occurs in the other documents. universe is common.

o Give more weight to jupiter on account of exclusivity.
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Applications

e Automatically detect stopwords

e Search
e Recommender systems

e Better performance in predictive modeling for some cases
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Term frequency-inverse document frequency

 Proportional to term frequency

e |nverse function of the number of documents in which it occurs
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Mathematical formula

N
w;; = tfi; - log (df-)

w; ; — weight of term ¢ in document j
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Mathematical formula

N
w;,; = 1fi; - log (df-)

w; ; — weight of term ¢ in document j

tfi; — term frequency of term 7 in document j
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Mathematical formula

N
w;,; = tfij-log (df-)

w; ; — weight of term ¢ in document j

tfi; — term frequency of term ¢in document j
N — number of documents in the corpus

df; — number of documents containing term ¢
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Mathematical formula

N
w;,; = tfi; - log (df-)

w; ; — weight of term ¢ in document j

tfi; — term frequency of term ¢ in document j
N — number of documents in the corpus
df; — number of documents cotaining term 1

Example:

— 20\ ~
Wiibrary,document — 9 - lOg(g) ~ 2
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tf-idf using scikit-learn

# Import TfidfVectorizer

from sklearn.feature_extraction.text import TfidfVectorizer
# Create TfidfVectorizer object

vectorizer = TfidfVectorizer()

# Generate matrix of word vectors

tfidf_matrix = vectorizer.fit_transform(corpus)

print(tfidf_matrix.toarray())

[[O. 0. 0. 0. 0.25434658 0.33443519
0.33443519 0. 0.25434658 0. 0.25434658 0.
0.76303975]

[O. 0.46735098 0. 0.46735098 0. 0.

0. 0.46735098 0. 0.46735098 0.35543247 0.
0. ]
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Let's practice!
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Cosine similarity
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Cosine Similarity

A-B

sim(A, B) = cos(0) = HAHHBH

10

' Image courtesy techninpink.com

FEATURE ENGINEERING FOR NLP IN PYTHON



The dot product

Consider two vectors,
V = (vi,v2,,0n), W = (w1, ws, -, wn)
Then the dot product of V.and W is,
VW = (v1 X w1) + (v2 X wa) + -+ + (vn X wy)
Example:
A=(4,7,1), B=(52,3)
A-B=(4x5)+(7Tx2)4+---(1x3)

=20+14+43 =37
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Magnitude of a vector

For any vector,
V = (vi,v2, -, vp)

The magnitude is defined as,

VI = V/(v1)2 + (v2)2 + .. + (vn)?

Example:

A=(4,7,1), B = (5,2,3)

Al = v/(4)? + (7)2 + (1)?

— V16 +49+1 =66

A4, 7, 1)

B (5, 2, 3)
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The cosine score
A:(4,7,1)

B (5, 2, 3) B:(5,2,3)

The cosine score,

A-B
cos(A,B) = Al B
A4,7,1) _ 37
V66 x /38
— (.7388
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Cosine Score: points to remember

e Value between -1 and 1.
e |n NLP, value between O and 1.

e Robust to document length.
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Implementation using scikit-learn

# Import the cosine_similarity
from sklearn.metrics.pairwise import cosine_similarity

# Define two 3-dimensional vectors A and B
A= (4,7,1)
B = (5,2,3)

# Compute the cosine score of A and B
score = cosine_similarity([A], [B])

# Print the cosine score

print(score)

array([[ 0.73881883]1])
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Let's practice!
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Building a plot line
based recommender
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Movie recommender

Title Overview

Shanahai A provincial boy related to a Shanghai crime family is recruited by his uncle

Triadg into cosmopolitan Shanghai in the 1930s to be a servant to a ganglord's
mistress.

Cry,the A south-Afri h hifor hi d ho h

el outh-African preacher goes to search for his wayward son who has

Country committed a crime in the big city.
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Movie recommender

get_recommendations("The Godfather")

1178 The Godfather: Part II
44030 The Godfather Trilogy: 1972-1990
1914 The Godfather: Part III
23126 Blood Ties
11297 Household Saints
34717 Start Liquidation
10821 Election
38030 Goodfellas
17729 Short Sharp Shock
26293 Beck 28 - Familjen

Name: title, dtype: object
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Steps
1. Text preprocessing
2. Generate tf-idf vectors

3. Generate cosine similarity matrix
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The recommender function

Take a movie title, cosine similarity matrix and indices series as arguments.

—
°

Extract pairwise cosine similarity scores for the movie.
Sort the scores in descending order.

Output titles corresponding to the highest scores.

o A DN

Ignore the highest similarity score (of 1).
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Generating tf-idf vectors

# Import TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer

# Create TfidfVectorizer object
vectorizer = TfidfVectorizer()

# Generate matrix of tf-idf vectors
tfidf_matrix = vectorizer.fit_transform(movie_plots)

FEATURE ENGINEERING FOR NLP IN PYTHON



Generating cosine similarity matrix

# Import cosine_similarity

from sklearn.metrics.pairwise import cosine_similarity

# Generate cosine similarity matrix

cosine_sim = cosine_similarity(tfidf_matrix, tfidf_matrix)

array([[1. , 0.27435345, 0.23092036,
0.00758112],
[0.27435345, 1. , 0.1246955 ,
0.00740494],

M 4

[0.00758112, 0.00740494, 0.
1. 11)
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The linear_ kernel function

e Magnitude of a tf-idf vector is 1
e Cosine score between two tf-idf vectors is their dot product.
e Can significantly improve computation time.

e Use linear_kernel instead of cosine_similarity .

FEATURE ENGINEERING FOR NLP IN PYTHON



Generating cosine similarity matrix

# Import cosine_similarity
from sklearn.metrics.pairwise import linear_kernel

# Generate cosine similarity matrix

cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)

array([[1. , 0.27435345, 0.23092036, ...
0.00758112],
[0.27435345, 1. , 0.1246955 , ...
0.00740494],

o o ,

[0.00758112, 0.00740494, 0.
1. 11)
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The get_recommendations function

get_recommendations('The Lion King', cosine_sim, indices)

7782 African Cats
5877 The Lion King 2: Simba's Pride
4524 Born Free
2719 The Bear
4770 Once Upon a Time in China III
7070 Crows Zero
739 The Wizard of 0z
8926 The Jungle Book
1749 Shadow of a Doubt
7993 October Baby

Name: title, dtype: object
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Let's practice!
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Beyond n-grams:
word embeddings
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The problem with BoW and tf-idf

'I am happy'
'T am joyous'

"I am sad'
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Word embeddings

Mapping words into an n-dimensional vector space
Produced using deep learning and huge amounts of data
Discern how similar two words are to each other

Used to detect synonyms and antonyms

Captures complex relationships
o King - Queen =2 Man -Woman

o France - Paris —> Russia - Moscow

Dependent on spacy model; independent of dataset you use
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Word embeddings using spaCy

import spacy

# Load model and create Doc object
nlp = spacy.load('en_core_web_1g')
doc = nlp('I am happy')

# Generate word vectors for each token
for token in doc:
print(token.vector)

[-1.0747459e+00 4.8677087e-02 5.6630421e+00 1.6680446e+00
-1.3194644e+00 -1.5142369e+00 1.1940931e+00 -3.0168812e+00
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Word similarities

doc = nlp("happy joyous sad")
for tokenl in doc:
for token2 in doc:
print(tokenl.text, token2.text, tokenl.similarity(token2))

happy happy 1.0
happy joyous 0.63244456

happy sad 0.37338886
joyous happy 0.63244456

joyous joyous 1.0
joyous sad 0.5340932
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Document similarities

# Generate doc objects
sentl = nlp("I am happy")
sent2 = nlp("I am sad")
sent3 = nlp("I am joyous")

# Compute similarity between sentl and sent?2
sentl.similarity(sent2)

0.9273363837282105

# Compute similarity between sentl and sent3

sentl.similarity(sent3)

0.9403554938594568
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Let's practice!
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Congratulations!
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Review

Basic features (characters, words, mentions, etc.)
Readability scores

Tokenization and lemmatization

Text cleaning

Part-of-speech tagging & named entity recognition
n-gram modeling

tf-idf

Cosine similarity

Word embeddings
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Further resources
e Advanced NLP with spaCy

e Deep Learning in Python
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https://www.datacamp.com/courses/advanced-nlp-with-spacy
https://www.datacamp.com/courses/deep-learning-in-python

Thank you!
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