
Building tf-idf
document vectors

FEATURE ENGINEER ING FOR NLP IN PYTHON

Rounak Banik
Data Scientist

FEATURE ENGINEERING FOR NLP IN PYTHON

n-gram modeling
Weight of dimension dependent on the frequency of the word corresponding to the
dimension.

Document contains the word human in five places.

Dimension corresponding to human has weight 5 .

FEATURE ENGINEERING FOR NLP IN PYTHON

Motivation
Some words occur very commonly across all documents

Corpus of documents on the universe
One document has jupiter and universe occurring 20 times each.

jupiter rarely occurs in the other documents. universe is common.

Give more weight to jupiter on account of exclusivity.

FEATURE ENGINEERING FOR NLP IN PYTHON

Applications
Automatically detect stopwords

Search

Recommender systems

Better performance in predictive modeling for some cases

FEATURE ENGINEERING FOR NLP IN PYTHON

Term frequency-inverse document frequency
Proportional to term frequency

Inverse function of the number of documents in which it occurs

FEATURE ENGINEERING FOR NLP IN PYTHON

Mathematical formula

w = tf ⋅ log

w → weight of term i in document j

i,j i,j (
dfi

N
)

i,j

FEATURE ENGINEERING FOR NLP IN PYTHON

Mathematical formula

w = tf ⋅ log

w → weight of term i in document j

tf → term frequency of term i in document j

i,j i,j (
dfi

N
)

i,j

i,j

FEATURE ENGINEERING FOR NLP IN PYTHON

Mathematical formula

w = tf ⋅ log

w → weight of term i in document j

tf → term frequency of term iin document j

N → number of documents in the corpus

df → number of documents containing term i

i,j i,j (
dfi

N
)

i,j

i,j

i

FEATURE ENGINEERING FOR NLP IN PYTHON

Mathematical formula

w = tf ⋅ log

w → weight of term i in document j

tf → term frequency of term i in document j

N → number of documents in the corpus

df → number of documents cotaining term i

Example:

w = 5 ⋅ log() ≈ 2

i,j i,j (
dfi

N
)

i,j

i,j

i

library,document 8
20

FEATURE ENGINEERING FOR NLP IN PYTHON

tf-idf using scikit-learn
Import TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
Create TfidfVectorizer object
vectorizer = TfidfVectorizer()
Generate matrix of word vectors
tfidf_matrix = vectorizer.fit_transform(corpus)
print(tfidf_matrix.toarray())

[[0. 0. 0. 0. 0.25434658 0.33443519
 0.33443519 0. 0.25434658 0. 0.25434658 0.
 0.76303975]
 [0. 0.46735098 0. 0.46735098 0. 0.
 0. 0.46735098 0. 0.46735098 0.35543247 0.
 0.]
...

Let's practice!
FEATURE ENGINEER ING FOR NLP IN PYTHON

Cosine similarity
FEATURE ENGINEER ING FOR NLP IN PYTHON

Rounak Banik
Data Scientist

FEATURE ENGINEERING FOR NLP IN PYTHON

 Image courtesy techninpink.com1

FEATURE ENGINEERING FOR NLP IN PYTHON

The dot product
Consider two vectors,

V = (v , v , ⋯ , v),W = (w ,w , ⋯ ,w)

Then the dot product of V and W is,

V ⋅ W = (v × w) + (v × w) + ⋯ + (v × w)

Example:

A = (4, 7, 1) , B = (5, 2, 3)

A ⋅ B = (4 × 5) + (7 × 2) + ⋯ (1 × 3)

= 20 + 14 + 3 = 37A ⋅ Bd

1 2 n 1 2 n

1 1 2 2 n n

FEATURE ENGINEERING FOR NLP IN PYTHON

Magnitude of a vector
For any vector,

V = (v , v , ⋯ , v)

The magnitude is defined as,

∣∣V∣∣ =

Example:

A = (4, 7, 1) , B = (5, 2, 3)

∣∣A∣∣ =

filler = =

1 2 n

√(v) + (v) + ... + (v)1 2 2 2
n

2

√(4) + (7) + (1)2 2 2

√16 + 49 + 1

√66

FEATURE ENGINEERING FOR NLP IN PYTHON

The cosine score
A : (4, 7, 1)

B : (5, 2, 3)

The cosine score,

cos(A,B) =

fillerslorem =

fillersl = 0.7388

∣A∣ ⋅ ∣B∣
A ⋅ B

 ×√ 66

√ 38
 37

FEATURE ENGINEERING FOR NLP IN PYTHON

Cosine Score: points to remember
Value between -1 and 1.

In NLP, value between 0 and 1.

Robust to document length.

FEATURE ENGINEERING FOR NLP IN PYTHON

Implementation using scikit-learn
Import the cosine_similarity
from sklearn.metrics.pairwise import cosine_similarity

Define two 3-dimensional vectors A and B
A = (4,7,1)
B = (5,2,3)

Compute the cosine score of A and B
score = cosine_similarity([A], [B])

Print the cosine score
print(score)

array([[0.73881883]])

Let's practice!
FEATURE ENGINEER ING FOR NLP IN PYTHON

Building a plot line
based recommender
FEATURE ENGINEER ING FOR NLP IN PYTHON

Rounak Banik
Data Scientist

FEATURE ENGINEERING FOR NLP IN PYTHON

Movie recommender
Title Overview

Shanghai
Triad

A provincial boy related to a Shanghai crime family is recruited by his uncle
into cosmopolitan Shanghai in the 1930s to be a servant to a ganglord's
mistress.

Cry, the
Beloved
Country

A South-African preacher goes to search for his wayward son who has
committed a crime in the big city.

FEATURE ENGINEERING FOR NLP IN PYTHON

Movie recommender
get_recommendations("The Godfather")

1178 The Godfather: Part II
44030 The Godfather Trilogy: 1972-1990
1914 The Godfather: Part III
23126 Blood Ties
11297 Household Saints
34717 Start Liquidation
10821 Election
38030 Goodfellas
17729 Short Sharp Shock
26293 Beck 28 - Familjen
Name: title, dtype: object

FEATURE ENGINEERING FOR NLP IN PYTHON

Steps
1. Text preprocessing

2. Generate tf-idf vectors

3. Generate cosine similarity matrix

FEATURE ENGINEERING FOR NLP IN PYTHON

The recommender function
1. Take a movie title, cosine similarity matrix and indices series as arguments.

2. Extract pairwise cosine similarity scores for the movie.

3. Sort the scores in descending order.

4. Output titles corresponding to the highest scores.

5. Ignore the highest similarity score (of 1).

FEATURE ENGINEERING FOR NLP IN PYTHON

Generating tf-idf vectors
Import TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer

Create TfidfVectorizer object
vectorizer = TfidfVectorizer()

Generate matrix of tf-idf vectors
tfidf_matrix = vectorizer.fit_transform(movie_plots)

FEATURE ENGINEERING FOR NLP IN PYTHON

Generating cosine similarity matrix
Import cosine_similarity
from sklearn.metrics.pairwise import cosine_similarity

Generate cosine similarity matrix
cosine_sim = cosine_similarity(tfidf_matrix, tfidf_matrix)

array([[1. , 0.27435345, 0.23092036, ..., 0. , 0. ,
 0.00758112],
 [0.27435345, 1. , 0.1246955 , ..., 0. , 0. ,
 0.00740494],
 ...,
 [0.00758112, 0.00740494, 0. , ..., 0. , 0. ,
 1.]])

FEATURE ENGINEERING FOR NLP IN PYTHON

The linear_kernel function
Magnitude of a tf-idf vector is 1

Cosine score between two tf-idf vectors is their dot product.

Can significantly improve computation time.

Use linear_kernel instead of cosine_similarity .

FEATURE ENGINEERING FOR NLP IN PYTHON

Generating cosine similarity matrix
Import cosine_similarity
from sklearn.metrics.pairwise import linear_kernel

Generate cosine similarity matrix
cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)

array([[1. , 0.27435345, 0.23092036, ..., 0. , 0. ,
 0.00758112],
 [0.27435345, 1. , 0.1246955 , ..., 0. , 0. ,
 0.00740494],
 ...,
 [0.00758112, 0.00740494, 0. , ..., 0. , 0. ,
 1.]])

FEATURE ENGINEERING FOR NLP IN PYTHON

The get_recommendations function
get_recommendations('The Lion King', cosine_sim, indices)

7782 African Cats
5877 The Lion King 2: Simba's Pride
4524 Born Free
2719 The Bear
4770 Once Upon a Time in China III
7070 Crows Zero
739 The Wizard of Oz
8926 The Jungle Book
1749 Shadow of a Doubt
7993 October Baby
Name: title, dtype: object

Let's practice!
FEATURE ENGINEER ING FOR NLP IN PYTHON

Beyond n-grams:
word embeddings

FEATURE ENGINEER ING FOR NLP IN PYTHON

Rounak Banik
Data Scientist

FEATURE ENGINEERING FOR NLP IN PYTHON

The problem with BoW and tf-idf
'I am happy'

'I am joyous'

'I am sad'

FEATURE ENGINEERING FOR NLP IN PYTHON

Word embeddings
Mapping words into an n-dimensional vector space

Produced using deep learning and huge amounts of data

Discern how similar two words are to each other

Used to detect synonyms and antonyms

Captures complex relationships
King - Queen → Man - Woman

France - Paris → Russia - Moscow

Dependent on spacy model; independent of dataset you use

FEATURE ENGINEERING FOR NLP IN PYTHON

Word embeddings using spaCy
import spacy

Load model and create Doc object
nlp = spacy.load('en_core_web_lg')
doc = nlp('I am happy')

Generate word vectors for each token
for token in doc:
 print(token.vector)

[-1.0747459e+00 4.8677087e-02 5.6630421e+00 1.6680446e+00
 -1.3194644e+00 -1.5142369e+00 1.1940931e+00 -3.0168812e+00
 ...

FEATURE ENGINEERING FOR NLP IN PYTHON

Word similarities
doc = nlp("happy joyous sad")
for token1 in doc:
 for token2 in doc:
 print(token1.text, token2.text, token1.similarity(token2))

happy happy 1.0
happy joyous 0.63244456
happy sad 0.37338886
joyous happy 0.63244456
joyous joyous 1.0
joyous sad 0.5340932
...

FEATURE ENGINEERING FOR NLP IN PYTHON

Document similarities
Generate doc objects
sent1 = nlp("I am happy")
sent2 = nlp("I am sad")
sent3 = nlp("I am joyous")

Compute similarity between sent1 and sent2
sent1.similarity(sent2)

0.9273363837282105

Compute similarity between sent1 and sent3
sent1.similarity(sent3)

0.9403554938594568

Let's practice!
FEATURE ENGINEER ING FOR NLP IN PYTHON

Congratulations!
FEATURE ENGINEER ING FOR NLP IN PYTHON

Rounak Banik
Data Scientist

FEATURE ENGINEERING FOR NLP IN PYTHON

Review
Basic features (characters, words, mentions, etc.)

Readability scores

Tokenization and lemmatization

Text cleaning

Part-of-speech tagging & named entity recognition

n-gram modeling

tf-idf

Cosine similarity

Word embeddings

FEATURE ENGINEERING FOR NLP IN PYTHON

Further resources
Advanced NLP with spaCy

Deep Learning in Python

https://www.datacamp.com/courses/advanced-nlp-with-spacy
https://www.datacamp.com/courses/deep-learning-in-python

Thank you!
FEATURE ENGINEER ING FOR NLP IN PYTHON

