Building tf-idf
document vectors

FEATURE ENGINEERING FOR NLP IN PYTHON

Rounak Banik
Data Scientist

n-gram modeling

e Weight of dimension dependent on the frequency of the word corresponding to the
dimension.

o Document contains the word human in five places.

o Dimension corresponding to human has weight 5 .

FEATURE ENGINEERING FOR NLP IN PYTHON

Motivation

e Some words occur very commonly across all documents

e Corpus of documents on the universe
o One document has jupiter and universe occurring 20 times each.

o jupiter rarely occurs in the other documents. universe is common.

o Give more weight to jupiter on account of exclusivity.

FEATURE ENGINEERING FOR NLP IN PYTHON

Applications

e Automatically detect stopwords

e Search
e Recommender systems

e Better performance in predictive modeling for some cases

FEATURE ENGINEERING FOR NLP IN PYTHON

Term frequency-inverse document frequency

 Proportional to term frequency

e |nverse function of the number of documents in which it occurs

FEATURE ENGINEERING FOR NLP IN PYTHON

Mathematical formula

N
w;; = tfi; - log (df-)

w; ; — weight of term ¢ in document j

FEATURE ENGINEERING FOR NLP IN PYTHON

Mathematical formula

N
w;,; = 1fi; - log (df-)

w; ; — weight of term ¢ in document j

tfi; — term frequency of term 7 in document j

FEATURE ENGINEERING FOR NLP IN PYTHON

Mathematical formula

N
w;,; = tfij-log (df-)

w; ; — weight of term ¢ in document j

tfi; — term frequency of term ¢in document j
N — number of documents in the corpus

df; — number of documents containing term ¢

FEATURE ENGINEERING FOR NLP IN PYTHON

Mathematical formula

N
w;,; = tfi; - log (df-)

w; ; — weight of term ¢ in document j

tfi; — term frequency of term ¢ in document j
N — number of documents in the corpus
df; — number of documents cotaining term 1

Example:

— 20\ ~
Wiibrary,document — 9 - lOg(g) ~ 2

FEATURE ENGINEERING FOR NLP IN PYTHON

tf-idf using scikit-learn

Import TfidfVectorizer

from sklearn.feature_extraction.text import TfidfVectorizer
Create TfidfVectorizer object

vectorizer = TfidfVectorizer()

Generate matrix of word vectors

tfidf_matrix = vectorizer.fit_transform(corpus)

print(tfidf_matrix.toarray())

[[O. 0. 0. 0. 0.25434658 0.33443519
0.33443519 0. 0.25434658 0. 0.25434658 0.
0.76303975]

[O. 0.46735098 0. 0.46735098 0. 0.

0. 0.46735098 0. 0.46735098 0.35543247 0.
0.]

FEATURE ENGINEERING FOR NLP IN PYTHON

Let's practice!

FEATURE ENGINEERING FOR NLP IN PYTHON

Cosine similarity

FEATURE ENGINEERING FOR NLP IN PYTHON

O

Rounak Banik
Data Scientist

X datacamp

Cosine Similarity

A-B

sim(A, B) = cos(0) = HAHHBH

10

' Image courtesy techninpink.com

FEATURE ENGINEERING FOR NLP IN PYTHON

The dot product

Consider two vectors,
V = (vi,v2,,0n), W = (w1, ws, -, wn)
Then the dot product of V.and W is,
VW = (v1 X w1) + (v2 X wa) + -+ + (vn X wy)
Example:
A=(4,7,1), B=(52,3)
A-B=(4x5)+(7Tx2)4+---(1x3)

=20+14+43 =37

FEATURE ENGINEERING FOR NLP IN PYTHON

Magnitude of a vector

For any vector,
V = (vi,v2, -, vp)

The magnitude is defined as,

VI = V/(v1)2 + (v2)2 + .. + (vn)?

Example:

A=(4,7,1), B = (5,2,3)

Al = v/(4)? + (7)2 + (1)?

— V16 +49+1 =66

A4, 7, 1)

B (5, 2, 3)

FEATURE ENGINEERING FOR NLP IN PYTHON

The cosine score
A:(4,7,1)

B (5, 2, 3) B:(5,2,3)

The cosine score,

A-B
cos(A,B) = Al B
A4,7,1) _ 37
V66 x /38
— (.7388

X datacamp FEATURE ENGINEERING FOR NLP IN PYTHON

Cosine Score: points to remember

e Value between -1 and 1.
e |n NLP, value between O and 1.

e Robust to document length.

FEATURE ENGINEERING FOR NLP IN PYTHON

Implementation using scikit-learn

Import the cosine_similarity
from sklearn.metrics.pairwise import cosine_similarity

Define two 3-dimensional vectors A and B
A= (4,7,1)
B = (5,2,3)

Compute the cosine score of A and B
score = cosine_similarity([A], [B])

Print the cosine score

print(score)

array([[0.73881883]1])

FEATURE ENGINEERING FOR NLP IN PYTHON

Let's practice!

FEATURE ENGINEERING FOR NLP IN PYTHON

Building a plot line
based recommender

FEATURE ENGINEERING FOR NLP IN PYTHON

Rounak Banik
Data Scientist

Movie recommender

Title Overview

Shanahai A provincial boy related to a Shanghai crime family is recruited by his uncle

Triadg into cosmopolitan Shanghai in the 1930s to be a servant to a ganglord's
mistress.

Cry,the A south-Afri h hifor hi d ho h

el outh-African preacher goes to search for his wayward son who has

Country committed a crime in the big city.

FEATURE ENGINEERING FOR NLP IN PYTHON

Movie recommender

get_recommendations("The Godfather")

1178 The Godfather: Part II
44030 The Godfather Trilogy: 1972-1990
1914 The Godfather: Part III
23126 Blood Ties
11297 Household Saints
34717 Start Liquidation
10821 Election
38030 Goodfellas
17729 Short Sharp Shock
26293 Beck 28 - Familjen

Name: title, dtype: object

FEATURE ENGINEERING FOR NLP IN PYTHON

Steps
1. Text preprocessing
2. Generate tf-idf vectors

3. Generate cosine similarity matrix

FEATURE ENGINEERING FOR NLP IN PYTHON

The recommender function

Take a movie title, cosine similarity matrix and indices series as arguments.

—
°

Extract pairwise cosine similarity scores for the movie.
Sort the scores in descending order.

Output titles corresponding to the highest scores.

o A DN

Ignore the highest similarity score (of 1).

FEATURE ENGINEERING FOR NLP IN PYTHON

Generating tf-idf vectors

Import TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer

Create TfidfVectorizer object
vectorizer = TfidfVectorizer()

Generate matrix of tf-idf vectors
tfidf_matrix = vectorizer.fit_transform(movie_plots)

FEATURE ENGINEERING FOR NLP IN PYTHON

Generating cosine similarity matrix

Import cosine_similarity

from sklearn.metrics.pairwise import cosine_similarity

Generate cosine similarity matrix

cosine_sim = cosine_similarity(tfidf_matrix, tfidf_matrix)

array([[1. , 0.27435345, 0.23092036,
0.00758112],
[0.27435345, 1. , 0.1246955 ,
0.00740494],

M 4

[0.00758112, 0.00740494, 0.
1. 11)

FEATURE ENGINEERING FOR NLP IN PYTHON

The linear_ kernel function

e Magnitude of a tf-idf vector is 1
e Cosine score between two tf-idf vectors is their dot product.
e Can significantly improve computation time.

e Use linear_kernel instead of cosine_similarity .

FEATURE ENGINEERING FOR NLP IN PYTHON

Generating cosine similarity matrix

Import cosine_similarity
from sklearn.metrics.pairwise import linear_kernel

Generate cosine similarity matrix

cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)

array([[1. , 0.27435345, 0.23092036, ...
0.00758112],
[0.27435345, 1. , 0.1246955 , ...
0.00740494],

o o ,

[0.00758112, 0.00740494, 0.
1. 11)

FEATURE ENGINEERING FOR NLP IN PYTHON

The get_recommendations function

get_recommendations('The Lion King', cosine_sim, indices)

7782 African Cats
5877 The Lion King 2: Simba's Pride
4524 Born Free
2719 The Bear
4770 Once Upon a Time in China III
7070 Crows Zero
739 The Wizard of 0z
8926 The Jungle Book
1749 Shadow of a Doubt
7993 October Baby

Name: title, dtype: object

FEATURE ENGINEERING FOR NLP IN PYTHON

Let's practice!

FEATURE ENGINEERING FOR NLP IN PYTHON

Beyond n-grams:
word embeddings

FEATURE ENGINEERING FOR NLP IN PYTHON

Rounak Banik
Data Scientist

The problem with BoW and tf-idf

'I am happy'
'T am joyous'

"I am sad'

FEATURE ENGINEERING FOR NLP IN PYTHON

Word embeddings

Mapping words into an n-dimensional vector space
Produced using deep learning and huge amounts of data
Discern how similar two words are to each other

Used to detect synonyms and antonyms

Captures complex relationships
o King - Queen =2 Man -Woman

o France - Paris —> Russia - Moscow

Dependent on spacy model; independent of dataset you use

FEATURE ENGINEERING FOR NLP IN PYTHON

Word embeddings using spaCy

import spacy

Load model and create Doc object
nlp = spacy.load('en_core_web_1g')
doc = nlp('I am happy')

Generate word vectors for each token
for token in doc:
print(token.vector)

[-1.0747459e+00 4.8677087e-02 5.6630421e+00 1.6680446e+00
-1.3194644e+00 -1.5142369e+00 1.1940931e+00 -3.0168812e+00

FEATURE ENGINEERING FOR NLP IN PYTHON

Word similarities

doc = nlp("happy joyous sad")
for tokenl in doc:
for token2 in doc:
print(tokenl.text, token2.text, tokenl.similarity(token2))

happy happy 1.0
happy joyous 0.63244456

happy sad 0.37338886
joyous happy 0.63244456

joyous joyous 1.0
joyous sad 0.5340932

FEATURE ENGINEERING FOR NLP IN PYTHON

Document similarities

Generate doc objects
sentl = nlp("I am happy")
sent2 = nlp("I am sad")
sent3 = nlp("I am joyous")

Compute similarity between sentl and sent?2
sentl.similarity(sent2)

0.9273363837282105

Compute similarity between sentl and sent3

sentl.similarity(sent3)

0.9403554938594568

FEATURE ENGINEERING FOR NLP IN PYTHON

Let's practice!

FEATURE ENGINEERING FOR NLP IN PYTHON

Congratulations!

FEATURE ENGINEERING FOR NLP IN PYTHON

O

Rounak Banik
Data Scientist

Review

Basic features (characters, words, mentions, etc.)
Readability scores

Tokenization and lemmatization

Text cleaning

Part-of-speech tagging & named entity recognition
n-gram modeling

tf-idf

Cosine similarity

Word embeddings

FEATURE ENGINEERING FOR NLP IN PYTHON

Further resources
e Advanced NLP with spaCy

e Deep Learning in Python

FEATURE ENGINEERING FOR NLP IN PYTHON

https://www.datacamp.com/courses/advanced-nlp-with-spacy
https://www.datacamp.com/courses/deep-learning-in-python

Thank you!

FEATURE ENGINEERING FOR NLP IN PYTHON

