
Building a bag of
words model

FEATURE ENGINEER ING FOR NLP IN PYTHON

Rounak Banik
Data Scientist

FEATURE ENGINEERING FOR NLP IN PYTHON

Recap of data format for ML algorithms
For any ML algorithm,

Data must be in tabular form

Training features must be numerical

FEATURE ENGINEERING FOR NLP IN PYTHON

Bag of words model
Extract word tokens

Compute frequency of word tokens

Construct a word vector out of these frequencies and vocabulary of corpus

FEATURE ENGINEERING FOR NLP IN PYTHON

Bag of words model example
Corpus

"The lion is the king of the jungle"

"Lions have lifespans of a decade"

"The lion is an endangered species"

FEATURE ENGINEERING FOR NLP IN PYTHON

Bag of words model example
Vocabulary → a , an , decade , endangered , have , is , jungle , king , lifespans , lion ,
Lions , of , species , the , The

"The lion is the king of the jungle"

[0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 1]

"Lions have lifespans of a decade"

[1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0]

"The lion is an endangered species"

[0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1]

FEATURE ENGINEERING FOR NLP IN PYTHON

Text preprocessing
Lions , lion → lion

The , the → the

No punctuations

No stopwords

Leads to smaller vocabularies

Reducing number of dimensions helps improve performance

FEATURE ENGINEERING FOR NLP IN PYTHON

Bag of words model using sklearn
corpus = pd.Series([
 'The lion is the king of the jungle',
 'Lions have lifespans of a decade',
 'The lion is an endangered species'
])

FEATURE ENGINEERING FOR NLP IN PYTHON

Bag of words model using sklearn
Import CountVectorizer
from sklearn.feature_extraction.text import CountVectorizer
Create CountVectorizer object
vectorizer = CountVectorizer()
Generate matrix of word vectors
bow_matrix = vectorizer.fit_transform(corpus)
print(bow_matrix.toarray())

array([[0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 3],
 [0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0],
 [1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1]], dtype=int64)

Let's practice!
FEATURE ENGINEER ING FOR NLP IN PYTHON

Building a BoW
Naive Bayes

classifier
FEATURE ENGINEER ING FOR NLP IN PYTHON

Rounak Banik
Data Scientist

FEATURE ENGINEERING FOR NLP IN PYTHON

Spam filtering
message label

WINNER!! As a valued network customer you have been selected to receive a $900
prize reward! To claim call 09061701461 spam

Ah, work. I vaguely remember that. What does it feel like? ham

FEATURE ENGINEERING FOR NLP IN PYTHON

Steps
1. Text preprocessing

2. Building a bag-of-words model (or representation)

3. Machine learning

FEATURE ENGINEERING FOR NLP IN PYTHON

Text preprocessing using CountVectorizer
CountVectorizer arguments

lowercase : False , True

strip_accents : 'unciode' , 'ascii' , None

stop_words : 'english' , list , None

token_pattern : regex

tokenizer : function

FEATURE ENGINEERING FOR NLP IN PYTHON

Building the BoW model
Import CountVectorizer
from sklearn.feature_extraction.text import CountVectorizer

Create CountVectorizer object
vectorizer = CountVectorizer(strip_accents='ascii', stop_words='english', lowercase=False)

Import train_test_split
from sklearn.model_selection import train_test_split

Split into training and test sets
X_train, X_test, y_train, y_test = train_test_split(df['message'], df['label'], test_size=0.25)

FEATURE ENGINEERING FOR NLP IN PYTHON

Building the BoW model
...
...
Generate training Bow vectors
X_train_bow = vectorizer.fit_transform(X_train)

Generate test BoW vectors
X_test_bow = vectorizer.transform(X_test)

FEATURE ENGINEERING FOR NLP IN PYTHON

Training the Naive Bayes classifier
Import MultinomialNB
from sklearn.naive_bayes import MultinomialNB

Create MultinomialNB object
clf = MultinomialNB()

Train clf
clf.fit(X_train_bow, y_train)

Compute accuracy on test set
accuracy = clf.score(X_test_bow, y_test)
print(accuracy)

0.760051

Let's practice!
FEATURE ENGINEER ING FOR NLP IN PYTHON

Building n-gram
models

FEATURE ENGINEER ING FOR NLP IN PYTHON

Rounak Banik
Data Scientist

FEATURE ENGINEERING FOR NLP IN PYTHON

BoW shortcomings
review label

'The movie was good and not boring' positive

'The movie was not good and boring' negative

Exactly the same BoW representation!

Context of the words is lost.

Sentiment dependent on the position of 'not'.

FEATURE ENGINEERING FOR NLP IN PYTHON

n-grams
Contiguous sequence of n elements (or words) in a given document.

n = 1 → bag-of-words

'for you a thousand times over'

n = 2, n-grams:

[
'for you',
'you a',
'a thousand',
'thousand times',
'times over'
]

FEATURE ENGINEERING FOR NLP IN PYTHON

n-grams
'for you a thousand times over'

n = 3, n-grams:

[
'for you a',
'you a thousand',
'a thousand times',
'thousand times over'
]

Captures more context.

FEATURE ENGINEERING FOR NLP IN PYTHON

Applications
Sentence completion

Spelling correction

Machine translation correction

FEATURE ENGINEERING FOR NLP IN PYTHON

Building n-gram models using scikit-learn
Generates only bigrams.

bigrams = CountVectorizer(ngram_range=(2,2))

Generates unigrams, bigrams and trigrams.

ngrams = CountVectorizer(ngram_range=(1,3))

FEATURE ENGINEERING FOR NLP IN PYTHON

Shortcomings
Curse of dimensionality

Higher order n-grams are rare

Keep n small

Let's practice!
FEATURE ENGINEER ING FOR NLP IN PYTHON

