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Standardizing your text
Example of free text:

Fellow-Citizens of the Senate and of the House of

Representatives: AMONG the vicissitudes incident to life no

event could have �lled me with greater anxieties than that of

which the noti�cation was transmi�ed by your order, and

received on the th day of the present month.
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Dataset

print(speech_df.head()) 

                  Name           Inaugural Address    \  
0    George Washington     First Inaugural Address 
1    George Washington    Second Inaugural Address 
2    John Adams                  Inaugural Address     
3    Thomas Jefferson      First Inaugural Address     
4    Thomas Jefferson     Second Inaugural Address 
 
                        Date                               text 
0    Thursday, April 30, 1789    Fellow-Citizens of the Sena... 
1       Monday, March 4, 1793    Fellow Citizens: I AM again... 
2     Saturday, March 4, 1797    WHEN it was first perceived... 
3    Wednesday, March 4, 1801    Friends and Fellow-Citizens... 
4       Monday, March 4, 1805    PROCEEDING, fellow-citizens... 
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Removing unwanted characters
[a-zA-Z] : All le�er characters

[^a-zA-Z] : All non le�er characters

speech_df['text'] = speech_df['text']\ 
                   .str.replace('[^a-zA-Z]', ' ') 
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Removing unwanted characters
Before:

"Fellow-Citizens of the Senate and of the House of   
Representatives: AMONG the vicissitudes incident to    
life no event could have filled me with greater" ... 

A�er:

"Fellow Citizens of the Senate and of the House of   
Representatives AMONG the vicissitudes incident to    
life no event could have filled me with greater" ... 
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Standardize the case

speech_df['text'] = speech_df['text'].str.lower() 
print(speech_df['text'][0]) 

"fellow citizens of the senate and of the house of   
representatives among the vicissitudes incident to    
life no event could have filled me with greater"... 
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Length of text

speech_df['char_cnt'] = speech_df['text'].str.len() 
print(speech_df['char_cnt'].head()) 

0    1889   
1     806   
2    2408   
3    1495   
4    2465 
Name: char_cnt, dtype: int64 
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Word counts

speech_df['word_cnt'] =  
    speech_df['text'].str.split() 
speech_df['word_cnt'].head(1) 

['fellow', 'citizens', 'of', 'the', 'senate', 'and',... 
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Word counts

speech_df['word_counts'] =  
    speech_df['text'].str.split().str.len() 
print(speech_df['word_splits'].head()) 

0    1432 
1     135 
2    2323 
3    1736 
4    2169 
Name: word_cnt, dtype: int64 
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Average length of word

speech_df['avg_word_len'] =  
         speech_df['char_cnt'] / speech_df['word_cnt'] 
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Text to columns
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Initializing the vectorizer

from sklearn.feature_extraction.text import CountVectorizer 
cv = CountVectorizer() 
print(cv) 

CountVectorizer(analyzer=u'word', binary=False,  
        decode_error=u'strict',  
        dtype=<type 'numpy.int64'>,  
        encoding=u'utf-8', input=u'content', 
        lowercase=True, max_df=1.0, max_features=None,  
        min_df=1,ngram_range=(1, 1), preprocessor=None,  
        stop_words=None, strip_accents=None,  
        token_pattern=u'(?u)\\b\\w\\w+\\b', 
        tokenizer=None, vocabulary=None 
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Specifying the vectorizer

from sklearn.feature_extraction.text import CountVectorizer 
 
cv = CountVectorizer(min_df=0.1, max_df=0.9) 

min_df : minimum fraction of documents the word must occur

in max_df : maximum fraction of documents the word can occur

in
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Fit the vectorizer

cv.fit(speech_df['text_clean']) 
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Transforming your text

cv_transformed = cv.transform(speech_df['text_clean']) 
print(cv_transformed) 

<58x8839 sparse matrix of type '<type 'numpy.int64'>' 
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Transforming your text

cv_transformed.toarray() 
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Getting the features

feature_names = cv.get_feature_names() 
print(feature_names) 

[u'abandon', u'abandoned', u'abandonment', u'abate',  
u'abdicated', u'abeyance', u'abhorring', u'abide', 
u'abiding', u'abilities', u'ability', u'abject'... 



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Fitting and transforming

<58x8839 sparse matrix of type '<type 'numpy.int64'>' 

cv_transformed = cv.fit_transform(speech_df['text_clean']
print(cv_transformed) 
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Putting it all together

cv_df = pd.DataFrame(cv_transformed.toarray(),  
                     columns=cv.get_feature_names())\ 
                               .add_prefix('Counts_') 
print(cv_df.head()) 

     Counts_aback    Counts_abandoned    Counts_a... 
0               1                   0        ... 
1               0                   0        ... 
2               0                   1        ... 
3               0                   1        ... 
4               0                   0        ... 

 ```out Counts_aback Counts_abandon Counts_abandonment 0 1 0 0 1 0 0 1
2 0 1 0 3 0 1 0 4 0 0 0 ```

1
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Updating your DataFrame

speech_df = pd.concat([speech_df, cv_df],  
                      axis=1, sort=False) 
print(speech_df.shape) 

(58, 8845) 
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Introducing TF-IDF

print(speech_df['Counts_the'].head()) 

0    21 
1    13 
2    29 
3    22 
4    20 
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TF-IDF
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Importing the vectorizer

from sklearn.feature_extraction.text import TfidfVectorizer 
tv = TfidfVectorizer() 
print(tv) 

TfidfVectorizer(analyzer=u'word', binary=False, decode_error=u
        dtype=<type 'numpy.float64'>, encoding=u'utf-8', input
        lowercase=True, max_df=1.0, max_features=None, min_df=
        ngram_range=(1, 1), norm=u'l2', preprocessor=None, smo
        stop_words=None, strip_accents=None, sublinear_tf=Fals
        token_pattern=u'(?u)\\b\\w\\w+\\b', tokenizer=None, us
        vocabulary=None) 
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Max features and stopwords

tv = TfidfVectorizer(max_features=100,  
                     stop_words='english') 

max_features : Maximum number of columns created from TF-

IDF

stop_words : List of common words to omit e.g. "and", "the" etc.
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Fitting your text

tv.fit(train_speech_df['text']) 
train_tv_transformed = tv.transform(train_speech_df['text
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Putting it all together

train_tv_df = pd.DataFrame(train_tv_transformed.toarray(), 
                           columns=tv.get_feature_names())\ 
                                 .add_prefix('TFIDF_') 
 
train_speech_df = pd.concat([train_speech_df, train_tv_df], 
                            axis=1, sort=False) 
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Inspecting your transforms

examine_row = train_tv_df.iloc[0] 

print(examine_row.sort_values(ascending=False)) 

TFIDF_government    0.367430 
TFIDF_public        0.333237 
TFIDF_present       0.315182 
TFIDF_duty          0.238637 
TFIDF_citizens      0.229644 
Name: 0, dtype: float64 
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Applying the vectorizer to new data

test_tv_transformed = tv.transform(test_df['text_clean']) 
 
test_tv_df = pd.DataFrame(test_tv_transformed.toarray(), 
                          columns=tv.get_feature_names())\ 
                            .add_prefix('TFIDF_') 
 
test_speech_df = pd.concat([test_speech_df, test_tv_df],  
                           axis=1, sort=False) 
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Issues with bag of words
 

Positive meaning

Single word: happy

Negative meaning

Bi-gram : not happy

Positive meaning

Trigram : never not happy
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Using N-grams

tv_bi_gram_vec = TfidfVectorizer(ngram_range = (2,2)) 

# Fit and apply bigram vectorizer 
tv_bi_gram = tv_bi_gram_vec\ 
               .fit_transform(speech_df['text']) 

# Print the bigram features 
print(tv_bi_gram_vec.get_feature_names()) 

[u'american people', u'best ability ', 
 u'beloved country', u'best interests' ... ] 
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Finding common words

# Create a DataFrame with the Counts features 
tv_df = pd.DataFrame(tv_bi_gram.toarray(), 
                     columns=tv_bi_gram_vec.get_feature_names())\ 
                        .add_prefix('Counts_') 
 
tv_sums = tv_df.sum() 
print(tv_sums.head()) 

Counts_administration government    12 
Counts_almighty god                 15 
Counts_american people              36 
Counts_beloved country               8 
Counts_best ability                  8 
dtype: int64 
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Finding common words

print(tv_sums.sort_values(ascending=False)).head() 

Counts_united states         152 
Counts_fellow citizens        97 
Counts_american people        36 
Counts_federal government     35 
Counts_self government        30 
dtype: int64 
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Chapter 1
How to understand your data types

E�cient encoding or categorical features

Di�erent ways to work with continuous variables
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Chapter 2
How to locate gaps in your data

Best practices in dealing with the incomplete rows

Methods to �nd and deal with unwanted characters
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Chapter 3
How to observe your data's distribution

Why and how to modify this distribution

Best practices of �nding outliers and their removal
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Chapter 4
The foundations of word embeddings

Usage of Term Frequency Inverse Document Frequency (Tf-

idf)

N-grams and its advantages over bag of words



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Next steps
Kaggle competitions

More DataCamp courses

Your own project



Thank You!
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