
Introduction to Text
Encoding

FEATURE ENGINEER ING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan

Director of Data Science, Ordergroove

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Standardizing your text
Example of free text:

Fellow-Citizens of the Senate and of the House of

Representatives: AMONG the vicissitudes incident to life no

event could have �lled me with greater anxieties than that of

which the noti�cation was transmi�ed by your order, and

received on the th day of the present month.

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Dataset

print(speech_df.head())

 Name Inaugural Address \
0 George Washington First Inaugural Address
1 George Washington Second Inaugural Address
2 John Adams Inaugural Address
3 Thomas Jefferson First Inaugural Address
4 Thomas Jefferson Second Inaugural Address

 Date text
0 Thursday, April 30, 1789 Fellow-Citizens of the Sena...
1 Monday, March 4, 1793 Fellow Citizens: I AM again...
2 Saturday, March 4, 1797 WHEN it was first perceived...
3 Wednesday, March 4, 1801 Friends and Fellow-Citizens...
4 Monday, March 4, 1805 PROCEEDING, fellow-citizens...

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Removing unwanted characters
[a-zA-Z] : All le�er characters

[^a-zA-Z] : All non le�er characters

speech_df['text'] = speech_df['text']\
 .str.replace('[^a-zA-Z]', ' ')

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Removing unwanted characters
Before:

"Fellow-Citizens of the Senate and of the House of
Representatives: AMONG the vicissitudes incident to
life no event could have filled me with greater" ...

A�er:

"Fellow Citizens of the Senate and of the House of
Representatives AMONG the vicissitudes incident to
life no event could have filled me with greater" ...

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Standardize the case

speech_df['text'] = speech_df['text'].str.lower()
print(speech_df['text'][0])

"fellow citizens of the senate and of the house of
representatives among the vicissitudes incident to
life no event could have filled me with greater"...

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Length of text

speech_df['char_cnt'] = speech_df['text'].str.len()
print(speech_df['char_cnt'].head())

0 1889
1 806
2 2408
3 1495
4 2465
Name: char_cnt, dtype: int64

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Word counts

speech_df['word_cnt'] =
 speech_df['text'].str.split()
speech_df['word_cnt'].head(1)

['fellow', 'citizens', 'of', 'the', 'senate', 'and',...

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Word counts

speech_df['word_counts'] =
 speech_df['text'].str.split().str.len()
print(speech_df['word_splits'].head())

0 1432
1 135
2 2323
3 1736
4 2169
Name: word_cnt, dtype: int64

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Average length of word

speech_df['avg_word_len'] =
 speech_df['char_cnt'] / speech_df['word_cnt']

Let's practice!
FEATURE ENGINEER ING FOR MACHINE LEARNING IN PYTHON

Word Count
Representation

FEATURE ENGINEER ING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan

Director of Data Science, Ordergroove

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Text to columns

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Initializing the vectorizer

from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer()
print(cv)

CountVectorizer(analyzer=u'word', binary=False,
 decode_error=u'strict',
 dtype=<type 'numpy.int64'>,
 encoding=u'utf-8', input=u'content',
 lowercase=True, max_df=1.0, max_features=None,
 min_df=1,ngram_range=(1, 1), preprocessor=None,
 stop_words=None, strip_accents=None,
 token_pattern=u'(?u)\\b\\w\\w+\\b',
 tokenizer=None, vocabulary=None

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Specifying the vectorizer

from sklearn.feature_extraction.text import CountVectorizer

cv = CountVectorizer(min_df=0.1, max_df=0.9)

min_df : minimum fraction of documents the word must occur

in max_df : maximum fraction of documents the word can occur

in

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Fit the vectorizer

cv.fit(speech_df['text_clean'])

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Transforming your text

cv_transformed = cv.transform(speech_df['text_clean'])
print(cv_transformed)

<58x8839 sparse matrix of type '<type 'numpy.int64'>'

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Transforming your text

cv_transformed.toarray()

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Getting the features

feature_names = cv.get_feature_names()
print(feature_names)

[u'abandon', u'abandoned', u'abandonment', u'abate',
u'abdicated', u'abeyance', u'abhorring', u'abide',
u'abiding', u'abilities', u'ability', u'abject'...

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Fitting and transforming

<58x8839 sparse matrix of type '<type 'numpy.int64'>'

cv_transformed = cv.fit_transform(speech_df['text_clean']
print(cv_transformed)

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Putting it all together

cv_df = pd.DataFrame(cv_transformed.toarray(),
 columns=cv.get_feature_names())\
 .add_prefix('Counts_')
print(cv_df.head())

 Counts_aback Counts_abandoned Counts_a...
0 1 0 ...
1 0 0 ...
2 0 1 ...
3 0 1 ...
4 0 0 ...

 ```out Counts_aback Counts_abandon Counts_abandonment 0 1 0 0 1 0 0 1
2 0 1 0 3 0 1 0 4 0 0 0 ```

1



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Updating your DataFrame

speech_df = pd.concat([speech_df, cv_df],  
                      axis=1, sort=False) 
print(speech_df.shape) 

(58, 8845) 



Let's practice!
FEATURE  ENGINEER ING FOR  MACHINE  LEARNING IN  PYTHON



Tf-Idf Representation
FEATURE  ENGINEER ING FOR  MACHINE  LEARNING IN  PYTHON

Robert O'Callaghan

Director of Data Science, Ordergroove



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Introducing TF-IDF

print(speech_df['Counts_the'].head()) 

0    21 
1    13 
2    29 
3    22 
4    20 



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

TF-IDF



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Importing the vectorizer

from sklearn.feature_extraction.text import TfidfVectorizer 
tv = TfidfVectorizer() 
print(tv) 

TfidfVectorizer(analyzer=u'word', binary=False, decode_error=u
        dtype=<type 'numpy.float64'>, encoding=u'utf-8', input
        lowercase=True, max_df=1.0, max_features=None, min_df=
        ngram_range=(1, 1), norm=u'l2', preprocessor=None, smo
        stop_words=None, strip_accents=None, sublinear_tf=Fals
        token_pattern=u'(?u)\\b\\w\\w+\\b', tokenizer=None, us
        vocabulary=None) 



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Max features and stopwords

tv = TfidfVectorizer(max_features=100,  
                     stop_words='english') 

max_features : Maximum number of columns created from TF-

IDF

stop_words : List of common words to omit e.g. "and", "the" etc.



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Fitting your text

tv.fit(train_speech_df['text']) 
train_tv_transformed = tv.transform(train_speech_df['text



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Putting it all together

train_tv_df = pd.DataFrame(train_tv_transformed.toarray(), 
                           columns=tv.get_feature_names())\ 
                                 .add_prefix('TFIDF_') 
 
train_speech_df = pd.concat([train_speech_df, train_tv_df], 
                            axis=1, sort=False) 



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Inspecting your transforms

examine_row = train_tv_df.iloc[0] 

print(examine_row.sort_values(ascending=False)) 

TFIDF_government    0.367430 
TFIDF_public        0.333237 
TFIDF_present       0.315182 
TFIDF_duty          0.238637 
TFIDF_citizens      0.229644 
Name: 0, dtype: float64 



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Applying the vectorizer to new data

test_tv_transformed = tv.transform(test_df['text_clean']) 
 
test_tv_df = pd.DataFrame(test_tv_transformed.toarray(), 
                          columns=tv.get_feature_names())\ 
                            .add_prefix('TFIDF_') 
 
test_speech_df = pd.concat([test_speech_df, test_tv_df],  
                           axis=1, sort=False) 



Let's practice!
FEATURE  ENGINEER ING FOR  MACHINE  LEARNING IN  PYTHON



Bag of words and N-
grams

FEATURE  ENGINEER ING FOR  MACHINE  LEARNING IN  PYTHON

Robert O'Callaghan

Director of Data Science, Ordergroove



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Issues with bag of words
 

Positive meaning

Single word: happy

Negative meaning

Bi-gram : not happy

Positive meaning

Trigram : never not happy



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Using N-grams

tv_bi_gram_vec = TfidfVectorizer(ngram_range = (2,2)) 

# Fit and apply bigram vectorizer 
tv_bi_gram = tv_bi_gram_vec\ 
               .fit_transform(speech_df['text']) 

# Print the bigram features 
print(tv_bi_gram_vec.get_feature_names()) 

[u'american people', u'best ability ', 
 u'beloved country', u'best interests' ... ] 



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Finding common words

# Create a DataFrame with the Counts features 
tv_df = pd.DataFrame(tv_bi_gram.toarray(), 
                     columns=tv_bi_gram_vec.get_feature_names())\ 
                        .add_prefix('Counts_') 
 
tv_sums = tv_df.sum() 
print(tv_sums.head()) 

Counts_administration government    12 
Counts_almighty god                 15 
Counts_american people              36 
Counts_beloved country               8 
Counts_best ability                  8 
dtype: int64 



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Finding common words

print(tv_sums.sort_values(ascending=False)).head() 

Counts_united states         152 
Counts_fellow citizens        97 
Counts_american people        36 
Counts_federal government     35 
Counts_self government        30 
dtype: int64 



Let's practice!
FEATURE  ENGINEER ING FOR  MACHINE  LEARNING IN  PYTHON



Wrap-up
FEATURE  ENGINEER ING FOR  MACHINE  LEARNING IN  PYTHON

Robert O'Callaghan

Director of Data Science, Ordergroove



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Chapter 1
How to understand your data types

E�cient encoding or categorical features

Di�erent ways to work with continuous variables



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Chapter 2
How to locate gaps in your data

Best practices in dealing with the incomplete rows

Methods to �nd and deal with unwanted characters



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Chapter 3
How to observe your data's distribution

Why and how to modify this distribution

Best practices of �nding outliers and their removal



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Chapter 4
The foundations of word embeddings

Usage of Term Frequency Inverse Document Frequency (Tf-

idf)

N-grams and its advantages over bag of words



FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Next steps
Kaggle competitions

More DataCamp courses

Your own project



Thank You!
FEATURE  ENGINEER ING FOR  MACHINE  LEARNING IN  PYTHON


