Data distributions

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

O

Robert O'Callaghan

Director of Data Science, Ordergroove

X datacamp

Distribution assumptions

Normal Distribution

68.27%

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Observing your data

import matplotlib as plt

df.hist()
plt.show()

normal_column skewed_column
230 - OO0 -

600
200

a00

150
400

200
100

200

100

a
a] 10 153 20 23 0 200004000060000 ER00MR0002000340000

[:t dCItCICCIWIp FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Delving deeper with box plots

Interquartile Range (IQR)
I

Outliers
I ‘ ® 0
“Minimum” “Maximum”
(Q1 -1.51QR) Q1 Q3 (Q3 + 1.51QR)

(25" Percentile) (75" Percentile)

[:t dCItCICCIWIp FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Box plots in pandas

df[['column_1']].boxplot()
plt.show()

nnnnnnnnnnnnn

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Paring distributions

import seaborn as sns
sns.pairplot(df)

0 15 20 25 30 -200000200800E0E00IDAE0I80000 -30-20-10 0 10 20 30 40 50 60
normal_column skewed_column normal_column_2

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Further details on your distributions

df.describe()

Col1 Col2 Col3 Col4

count 100.000000 100.000000 100.000000 100.000000
mean -0.163779 -0.014801 -0.087965 -0.045790
std 1.046370 0.920881 0.936678 0.916474
min -2.781872 -2.156124 -2.647595 -1.957858
25% -0.849232 -0.655239 -0.602699 -0.736089
50% -0.179495 0.032115 -0.051863 0.066803
75% 0.663515 0.615688 0.417917 0.689591
max 2.466219 2.353921 2.059511 1.838561

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Let's practice!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Scaling and
transformations

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan
Data Scientist

Scaling data

160000
140000 1
120000

100000

80000

60000 S

40000
20000

-20000
Age Salary

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Min-Max scaling

Age

250

200 -

150 -

100

50 A

80

[:t thCICC]WIp FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Min-Max scaling

Age

250

200 -

150 -

100

50 A

1.0

[:t dCItCICCIWIp FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Min-Max scaling in Python

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(df[['Age']])

df['normalized_age'] = scaler.transform(df[['Age']])

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Standardization

250
200
150

100

[:t dCItCICCIWIp FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Standardization in Python

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(df[['Age']])

df['standardized_col'] = scaler\
.transform(df[['Age']])

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Log Transformation

ConvertedSalary
00

&00
o0
600
00
400
200
200

100

0
Q 20000 100000 150000 200000 250000 200000 0000 400000 4500040

[:t dCItCICCIWIp FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Log transformation in Python

from sklearn.preprocessing import PowerTransformer
log = PowerTransformer()
log.fit(df[['ConvertedSalary']])

df['log_ConvertedSalary'] =
log.transform(df[['ConvertedSalary']])

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Final Slide

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Removing outliers

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

O

Robert O'Callaghan

Director of Data Science, Ordergroove

X datacamp

What are outliers?

400
350
300
250
200
150

100

100 120 140 10

[:t thCICC]WIp FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Quantile based detection

95% of the data

D: dCItCICCIWIp FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Quantiles in Python

q_cutoff = df['col_name'].quantile(0.95)
mask = df['col_name'] < g_cutoff

trimmed_df = df[mask]

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Standard deviation based detection

3 standard deviations from the mean

Dt dCItCICCIWIp FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Standard deviation detection in Python

mean = df['col_name'].mean()
std = df['col_name'].std()
cut_off = std * 3

Lower, upper = mean - cut_off, mean + cut_off

new_df = df[(df['col_name'] < upper) &
(df['col_name'] > lower)]

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Let's practice!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Scaling and
transforming new
data

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

O

Robet O'Callaghan

Director of Data Science, Ordergroove

X datacamp

Reuse training scalers

scaler = StandardScaler()
scaler.fit(train[['col']])
train['scaled col'] = scaler.transform(train[['col']])

FIT SOME MODEL
o

test = pd.read_csv('test_csv')

test['scaled col'] = scaler.transform(test[['col']])

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Training transformations for reuse

train_mean = train[['col']].mean()
train_std = train[['col']].std()

cut_off = train_std * 3
train_lower = traln_mean - cut_off
train_upper = train_mean + cut_off
Subset train data

test = pd.read_csv('test_csv')

Subset test data

test = test[(test[['col']] < train_upper) &
(test[['col']] > train_lower)]

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Why only use training data?

Data leakage: Using data that you won't have access to when
assessing the performance of your model

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Avoid data leakage!

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

