Data distributions

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan Director of Data Science, Ordergroove

Distribution assumptions

R datacamp

Observing your data

df.hist() plt.show()

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

atacamp

Delving deeper with box plots

Box plots in pandas

df[['column_1']].boxplot() plt.show()

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

acamp

Paring distributions

import seaborn as sns sns.pairplot(df)

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

datacamp

Further details on your distributions

df.describe()

	Col1	Col2	Col3	Col4
count	100.000000	100.000000	100.000000	100.000000
mean	-0.163779	-0.014801	-0.087965	-0.045790
std	1.046370	0.920881	0.936678	0.916474
min	-2.781872	-2.156124	-2.647595	-1.957858
25 %	-0.849232	-0.655239	-0.602699	-0.736089
50%	-0.179495	0.032115	-0.051863	0.066803
75%	0.663515	0.615688	0.417917	0.689591
max	2.466219	2.353921	2.059511	1.838561

latacamp

Let's practice!

Scaling and transformations

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan Data Scientist

Scaling data

R datacamp

Min-Max scaling

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

P datacamp

Min-Max scaling

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

P datacamp

Min-Max scaling in Python

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

```
scaler.fit(df[['Age']])
```

df['normalized_age'] = scaler.transform(df[['Age']])

Standardization

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

R datacamp

Standardization in Python

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

```
scaler.fit(df[['Age']])
```

```
df['standardized_col'] = scaler\
```

```
.transform(df[['Age']])
```


Log Transformation

R datacamp

Log transformation in Python

from sklearn.preprocessing **import** PowerTransformer

log = PowerTransformer()

log.fit(df[['ConvertedSalary']])

df['log_ConvertedSalary'] =

log.transform(df[['ConvertedSalary']])

Final Slide

Removing outliers

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan Director of Data Science, Ordergroove

What are outliers?

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

R datacamp

Quantile based detection

datacamp

Quantiles in Python

q_cutoff = df['col_name'].quantile(0.95)

mask = df['col_name'] < q_cutoff</pre>

trimmed_df = df[mask]

Standard deviation based detection

Standard deviation detection in Python

```
mean = df['col_name'].mean()
std = df['col_name'].std()
cut_off = std * 3
```

```
lower, upper = mean - cut_off, mean + cut_off
new_df = df[(df['col_name'] < upper) &</pre>
                  (df['col_name'] > lower)]
```


Let's practice!

Scaling and transforming new data

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robet O'Callaghan Director of Data Science, Ordergroove

Reuse training scalers

```
scaler = StandardScaler()
```

```
scaler.fit(train[['col']])
train['scaled_col'] = scaler.transform(train[['col']])
# FIT SOME MODEL
# ....
test = pd.read_csv('test_csv')
test['scaled_col'] = scaler.transform(test[['col']])
```


Training transformations for reuse

```
train_mean = train[['col']].mean()
train_std = train[['col']].std()
```

```
cut_off = train_std * 3
train_lower = train_mean - cut_off
train_upper = train_mean + cut_off
```

```
# Subset train data
```

```
test = pd.read_csv('test_csv')
```

```
# Subset test data
test = test[(test[['col']] < train_upper) &</pre>
               (test[['col']] > train_lower)]
```

Why only use training data?

Data leakage: Using data that you won't have access to when assessing the performance of your model

Avoid data leakage! FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

