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Distribution assumptions

Normal Distribution
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Observing your data

import matplotlib as plt

df.hist()
plt.show()
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Delving deeper with box plots
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Box plots in pandas

df[['column_1']].boxplot()
plt.show()
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Paring distributions

import seaborn as sns
sns.pairplot(df)
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Further details on your distributions

df.describe()

Col1 Col2 Col3 Col4

count 100.000000 100.000000 100.000000 100.000000
mean -0.163779 -0.014801  -0.087965 -0.045790
std 1.046370 0.920881 0.936678 0.916474
min -2.781872 -2.156124  -2.647595 -1.957858
25%  -0.849232 -0.655239 -0.602699 -0.736089
50%  -0.179495 0.032115  -0.051863 0.066803
75% 0.663515 0.615688 0.417917 0.689591
max 2.466219 2.353921 2.059511 1.838561

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON



Let's practice!
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Scaling and
transformations
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Scaling data
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Min-Max scaling
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Min-Max scaling
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Min-Max scaling in Python

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(df[['Age']])

df['normalized_age'] = scaler.transform(df[['Age']])
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Standardization
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Standardization in Python

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(df[['Age']])

df['standardized_col'] = scaler\
.transform(df[['Age']])
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Log Transformation
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Log transformation in Python

from sklearn.preprocessing import PowerTransformer
log = PowerTransformer()
log.fit(df[['ConvertedSalary']])

df['log_ConvertedSalary'] =
log.transform(df[['ConvertedSalary']])
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Final Slide
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Removing outliers
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What are outliers?
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Quantile based detection

95% of the data
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Quantiles in Python

q_cutoff = df['col_name'].quantile(0.95)
mask = df['col_name'] < g_cutoff

trimmed_df = df[mask]
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Standard deviation based detection

3 standard deviations from the mean
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Standard deviation detection in Python

mean = df['col_name'].mean()
std = df['col_name'].std()
cut_off = std * 3

Lower, upper = mean - cut_off, mean + cut_off

new_df = df[(df['col_name'] < upper) &
(df['col_name'] > lower)]
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Let's practice!
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Scaling and
transforming new
data
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Reuse training scalers

scaler = StandardScaler()
scaler.fit(train[['col']])
train['scaled col'] = scaler.transform(train[['col']])

# FIT SOME MODEL
o

test = pd.read_csv('test_csv')

test['scaled col'] = scaler.transform(test[['col']])
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Training transformations for reuse

train_mean = train[['col']].mean()
train_std = train[['col']].std()

cut_off = train_std * 3
train_lower = traln_mean - cut_off
train_upper = train_mean + cut_off
# Subset train data

test = pd.read_csv('test_csv')

# Subset test data

test = test[(test[['col']] < train_upper) &
(test[['col']] > train_lower)]
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Why only use training data?

Data leakage: Using data that you won't have access to when
assessing the performance of your model
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Avoid data leakage!
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