Why generate features?

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan Director of Data Science, Ordergroove

R datacamp

Feature Engineering

House A is a two bedroomed house	House	Bedrooms	sq. ft
2000 sq. ft brownstone.	A	2	2000
	В	1	1500
House B is 1500 sq. π with one bedroom.	•••	***	

Different types of data

- Continuous: either integers (or whole numbers) or floats (decimals)
- Categorical: one of a limited set of values, e.g. gender, country of birth
- Ordinal: ranked values, often with no detail of distance between them
- Boolean: True/False values
- Datetime: dates and times

Course structure

- Chapter 1: Feature creation and extraction
- Chapter 2: Engineering messy data
- Chapter 3: Feature normalization \bullet
- Chapter 4: Working with text features

Pandas

import pandas as pd df = pd.read_csv(path_to_csv_file) print(df.head())

Dataset

SurveyDate \

- 0 2018-02-28 20:20:00
- 1 2018-06-28 13:26:00
- 2 2018-06-06 03:37:00
- 3 2018-05-09 01:06:00
- 4 2018-04-12 22:41:00

FormalEducation

- 0 Bachelor's degree (BA. BS. B.Eng.. etc.)
- 1 Bachelor's degree (BA. BS. B.Eng.. etc.)
- 2 Bachelor's degree (BA. BS. B.Eng.. etc.)
- 3 Some college/university study ...
- 4 Bachelor's degree (BA. BS. B.Eng.. etc.)

R datacamp

Column names

print(df.columns)

Index(['SurveyDate', 'FormalEducation', 'ConvertedSalary', 'Hobby', 'Country', 'StackOverflowJobsRecommend', 'VersionControl', 'Age', 'Years Experience', 'Gender', 'RawSalary'], dtype='object')

Column types

print(df.dtypes)

SurveyDate	object	
FormalEducation	object	
ConvertedSalary	float64	
• • •		
Years Experience	int64	
Gender	object	
RawSalary	object	
dtype: object		

Selecting specific data types

only_ints = df.select_dtypes(include=['int']) print(only_ints.columns)

Index(['Age', 'Years Experience'], dtype='object')

Lets get going! FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Dealing with Categorical Variables

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan Director of Data Science, Ordergroove

tacamp

Encoding categorical features

Index	Country
1	'India'
2	'USA'
3	'UK'
4	'UK′
5	'France'
•••	•••

R datacamp

Encoding categorical features

Index	Country
1	'India'
2	'USA'
3	' UK '
4	' UK '
5	'France'
•••	•••

Index	C_India	C_USA	С_ИК	C_France
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	1	0
5	0	0	0	1
***	•••	•••	•••	•••

Encoding categorical features

- One-hot encoding
- Dummy encoding

One-hot encoding

	C_France	C_India	C_UK	C_USA
0	0	1	Ο	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	0
4	1	0	0	0

R datacamp

Dummy encoding

One-hot vs. dummies

- One-hot encoding: Explainable features
- **Dummy encoding:** Necessary information without duplication

Index	Sex
0	Male
1	Female
2	Male

Index	Male	Female
0	1	0
1	0	1
2	1	0

Index	Male
0	1
1	0
2	1

Limiting your columns

counts = df['Country'].value_counts() print(counts)

'USA'	8			
'UK'	6			
'India'	2			
'France'	1			
Name: Co	untry,	dtype:	object	

Limiting your columns

mask = df['Country'].isin(counts[counts < 5].index)</pre> df['Country'][mask] = 'Other' print(pd.value_counts(colors))

'USA'	8
' UK '	6
'Other'	3
Name: Count	try, dtype: object

Now you deal with categorical variables

Numeric variables

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

Robert O'Callaghan Director of Data Science, Ordergroove

Types of numeric features

- Age
- Price
- Counts
- Geospatial data

Does size matter?

	Resturant_ID	Number_of_Violations
0	RS_1	0
1	RS_2	0
2	RS_3	2
3	RS_4	1
4	RS_5	0
5	RS_6	0
6	RS_7	4
7	RS_8	4
8	RS_9	1
9	RS_10	0

FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

R datacamp

Binarizing numeric variables

```
df['Binary_Violation'] = 0
df.loc[df['Number_of_Violations'] > 0,
                'Binary_Violation'] = 1
```


Binarizing numeric variables

	Resturant_ID	Number_of_Violations	Binary_Violation
0	RS_1	0	0
1	RS_2	0	0
2	RS_3	2	1
3	RS_4	1	1
4	RS_5	0	0
5	RS_6	0	0
6	RS_7	4	1
7	RS_8	4	1
8	RS_9	1	1
9	RS_10	0	0

R datacamp

Binning numeric variables

```
import numpy as np
df['Binned_Group'] = pd.cut(
    df['Number_of_Violations'],
    bins=[-np.inf, 0, 2, np.inf],
    labels=[1, 2, 3]
```


Binning numeric variables

V

datacamp

	Resturant_ID	Number_of_Violations	Binned_Group
0	RS_1	0	1
1	RS_2	0	1
2	RS_3	2	2
3	RS_4	1	2
4	RS_5	0	1
5	RS_6	0	1
6	RS_7	4	3
7	RS_8	4	3
8	RS_9	1	2
9	RS_10	0	1

Lets start practicing! FEATURE ENGINEERING FOR MACHINE LEARNING IN PYTHON

