
Regression review
EXTREME GRADIENT BOOST ING WITH XGBOOST

Sergey Fogelson
Head of Data Science, TelevisaUnivision

EXTREME GRADIENT BOOSTING WITH XGBOOST

Regression basics
Outcome is real-valued

EXTREME GRADIENT BOOSTING WITH XGBOOST

Common regression metrics
Root mean squared error (RMSE)

Mean absolute error (MAE)

EXTREME GRADIENT BOOSTING WITH XGBOOST

Computing RMSE
Actual Predicted

10 20

3 8

6 1

EXTREME GRADIENT BOOSTING WITH XGBOOST

Computing RMSE
Actual Predicted Error

10 20 -10

3 8 -5

6 1 5

EXTREME GRADIENT BOOSTING WITH XGBOOST

Computing RMSE
Actual Predicted Error Squared Error

10 20 -10 100

3 8 -5 25

6 1 5 25

Total Squared Error: 150

Mean Squared Error: 50

Root Mean Squared Error: 7.07

EXTREME GRADIENT BOOSTING WITH XGBOOST

Computing MAE
Actual Predicted Error

10 20 -10

3 8 -5

6 1 5

Total Absolute Error: 20

Mean Absolute Error: 6.67

EXTREME GRADIENT BOOSTING WITH XGBOOST

Common regression algorithms
Linear regression

Decision trees

EXTREME GRADIENT BOOSTING WITH XGBOOST

Algorithms for both regression and classification

 https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/
com.ibm.spss.modeler.help/nodes_treebuilding.htm
1

Let's practice!
EXTREME GRADIENT BOOST ING WITH XGBOOST

Objective (loss)
functions and base

learners
EXTREME GRADIENT BOOST ING WITH XGBOOST

Sergey Fogelson
Head of Data Science, TelevisaUnivision

EXTREME GRADIENT BOOSTING WITH XGBOOST

Objective Functions and Why We Use Them
Quantifies how far off a prediction is from the actual result

Measures the difference between estimated and true values
for some collection of data

Goal: Find the model that yields the minimum value of the
loss function

EXTREME GRADIENT BOOSTING WITH XGBOOST

Common loss functions and XGBoost
Loss function names in xgboost:

reg:squarederror - use for regression problems

reg:logistic - use for classification problems when you want
just decision, not probability

binary:logistic - use when you want probability rather than
just decision

EXTREME GRADIENT BOOSTING WITH XGBOOST

Base learners and why we need them
XGBoost involves creating a meta-model that is composed of
many individual models that combine to give a final
prediction

Individual models = base learners

Want base learners that when combined create final
prediction that is non-linear

Each base learner should be good at distinguishing or
predicting different parts of the dataset

Two kinds of base learners: tree and linear

EXTREME GRADIENT BOOSTING WITH XGBOOST

Trees as base learners example: Scikit-learn API
import xgboost as xgb
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split

boston_data = pd.read_csv("boston_housing.csv")
X, y = boston_data.iloc[:,:-1],boston_data.iloc[:,-1]

X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.2,
 random_state=123)
xg_reg = xgb.XGBRegressor(objective='reg:squarederror', n_estimators=10,
 seed=123)
xg_reg.fit(X_train, y_train)

preds = xg_reg.predict(X_test)

EXTREME GRADIENT BOOSTING WITH XGBOOST

Trees as base learners example: Scikit-learn API
rmse = np.sqrt(mean_squared_error(y_test,preds))

print("RMSE: %f" % (rmse))

RMSE: 129043.2314

EXTREME GRADIENT BOOSTING WITH XGBOOST

Linear base learners example: learning API only
import xgboost as xgb
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split

boston_data = pd.read_csv("boston_housing.csv")

X, y = boston_data.iloc[:,:-1],boston_data.iloc[:,-1]

X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.2,
 random_state=123)
DM_train = xgb.DMatrix(data=X_train,label=y_train)
DM_test = xgb.DMatrix(data=X_test,label=y_test)
params = {"booster":"gblinear","objective":"reg:squarederror"}
xg_reg = xgb.train(params = params, dtrain=DM_train, num_boost_round=10)

preds = xg_reg.predict(DM_test)

EXTREME GRADIENT BOOSTING WITH XGBOOST

Linear base learners example: learning API only
rmse = np.sqrt(mean_squared_error(y_test,preds))

print("RMSE: %f" % (rmse))

RMSE: 124326.24465

Let's get to work!
EXTREME GRADIENT BOOST ING WITH XGBOOST

Regularization and
base learners in

XGBoost
EXTREME GRADIENT BOOST ING WITH XGBOOST

Sergey Fogelson
Head of Data Science, TelevisaUnivision

EXTREME GRADIENT BOOSTING WITH XGBOOST

Regularization in XGBoost
Regularization is a control on model complexity

Want models that are both accurate and as simple as
possible

Regularization parameters in XGBoost:
gamma - minimum loss reduction allowed for a split to
occur

alpha - l1 regularization on leaf weights, larger values mean
more regularization

lambda - l2 regularization on leaf weights

EXTREME GRADIENT BOOSTING WITH XGBOOST

L1 regularization in XGBoost example
import xgboost as xgb
import pandas as pd
boston_data = pd.read_csv("boston_data.csv")
X,y = boston_data.iloc[:,:-1],boston_data.iloc[:,-1]
boston_dmatrix = xgb.DMatrix(data=X,label=y)
params={"objective":"reg:squarederror","max_depth":4}
l1_params = [1,10,100]
rmses_l1=[]
for reg in l1_params:
 params["alpha"] = reg
 cv_results = xgb.cv(dtrain=boston_dmatrix, params=params,nfold=4,
 num_boost_round=10,metrics="rmse",as_pandas=True,seed=123)
 rmses_l1.append(cv_results["test-rmse-mean"].tail(1).values[0])
print("Best rmse as a function of l1:")
print(pd.DataFrame(list(zip(l1_params,rmses_l1)), columns=["l1","rmse"]))

Best rmse as a function of l1:
 l1 rmse
 0 1 69572.517742
 1 10 73721.967141
 2 100 82312.312413

EXTREME GRADIENT BOOSTING WITH XGBOOST

Base learners in XGBoost
Linear Base Learner:

Sum of linear terms

Boosted model is weighted sum of linear models (thus is
itself linear)

Rarely used

Tree Base Learner:
Decision tree

Boosted model is weighted sum of decision trees
(nonlinear)

Almost exclusively used in XGBoost

EXTREME GRADIENT BOOSTING WITH XGBOOST

Creating DataFrames from multiple equal-length lists
pd.DataFrame(list(zip(list1,list2)),columns=
["list1","list2"]))

zip creates a generator of parallel values:
zip([1,2,3],["a","b""c"]) = [1,"a"],[2,"b"],[3,"c"]

generators need to be completely instantiated before
they can be used in DataFrame objects

list() instantiates the full generator and passing that into
the DataFrame converts the whole expression

Let's practice!
EXTREME GRADIENT BOOST ING WITH XGBOOST

