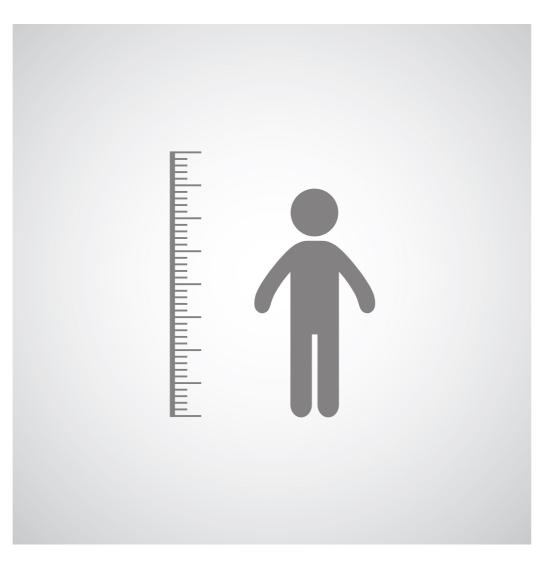
Regression review

EXTREME GRADIENT BOOSTING WITH XGBOOST

Sergey Fogelson Head of Data Science, TelevisaUnivision

Regression basics

• Outcome is real-valued



Common regression metrics

- Root mean squared error (RMSE)
- Mean absolute error (MAE)

Computing RMSE

Actual	Predicted
10	20
3	8
6	1

Computing RMSE

Actual	Predicted	Error
10	20	-10
3	8	-5
6	1	5

Computing RMSE

Actual	Predicted	Error	Squared Error
10	20	-10	100
3	8	-5	25
6	1	5	25

- Total Squared Error: 150
- Mean Squared Error: 50 \bullet
- Root Mean Squared Error: 7.07

Computing MAE

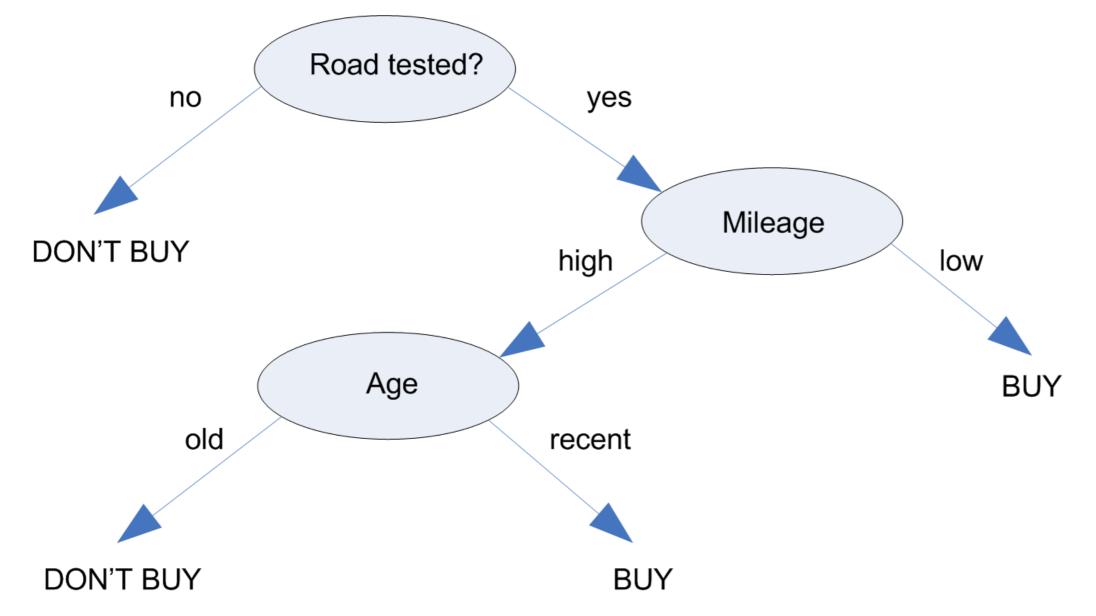
Actual	Predicted	Error
10	20	-10
3	8	-5
6	1	5

- Total Absolute Error: 20
- Mean Absolute Error: 6.67

Common regression algorithms

- Linear regression
- **Decision trees**

Algorithms for both regression and classification



¹ https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/ com.ibm.spss.modeler.help/nodes_treebuilding.htm

acamp

Let's practice!

Objective (loss) functions and base learners

EXTREME GRADIENT BOOSTING WITH XGBOOST

Sergey Fogelson Head of Data Science, TelevisaUnivision

R datacamp

Objective Functions and Why We Use Them

- Quantifies how far off a prediction is from the actual result ${\bullet}$
- Measures the difference between estimated and true values for some collection of data
- Goal: Find the model that yields the minimum value of the \bullet loss function

Common loss functions and XGBoost

- Loss function names in xgboost:
 - reg:squarederror use for regression problems 0
 - reg:logistic use for classification problems when you want 0 just decision, not probability
 - binary:logistic use when you want probability rather than 0 just decision

Base learners and why we need them

- XGBoost involves creating a meta-model that is composed of many individual models that combine to give a final prediction
- Individual models = base learners
- Want base learners that when combined create final prediction that is **non-linear**
- Each base learner should be good at distinguishing or predicting different parts of the dataset
- Two kinds of base learners: tree and linear

Trees as base learners example: Scikit-learn API

```
import xgboost as xgb
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
boston_data = pd.read_csv("boston_housing.csv")
X, y = boston_data.iloc[:,:-1],boston_data.iloc[:,-1]
X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.2,
                                                         random state=123)
xg_reg = xgb.XGBRegressor(objective='reg:squarederror', n_estimators=10,
                                                   seed=123)
xg_reg.fit(X_train, y_train)
preds = xg_reg.predict(X_test)
```


Trees as base learners example: Scikit-learn API

rmse = np.sqrt(mean_squared_error(y_test,preds))

print("RMSE: %f" % (rmse))

RMSE: 129043.2314

Linear base learners example: learning API only

import xqboost as xqb import pandas as pd import numpy as np from sklearn.model_selection import train_test_split

```
boston_data = pd.read_csv("boston_housing.csv")
```

```
X, y = boston_data.iloc[:,:-1],boston_data.iloc[:,-1]
```

```
X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.2,
```

```
random state=123)
```

```
DM_train = xqb.DMatrix(data=X_train,label=y_train)
DM_test = xqb.DMatrix(data=X_test,label=y_test)
params = {"booster":"qblinear","objective":"req:squarederror"}
xq_req = xqb.train(params = params, dtrain=DM_train, num_boost_round=10)
```

preds = xg_reg.predict(DM_test)

Linear base learners example: learning API only

rmse = np.sqrt(mean_squared_error(y_test,preds))

print("RMSE: %f" % (rmse))

RMSE: 124326.24465

Let's get to work!

Regularization and base learners in XGBoost

EXTREME GRADIENT BOOSTING WITH XGBOOST

Sergey Fogelson Head of Data Science, TelevisaUnivision

R datacamp

Regularization in XGBoost

- Regularization is a control on model complexity \bullet
- Want models that are both accurate and as simple as possible
- Regularization parameters in XGBoost:
 - gamma minimum loss reduction allowed for a split to 0 occur
 - alpha 11 regularization on leaf weights, larger values mean 0 more regularization
 - lambda 12 regularization on leaf weights 0

L1 regularization in XGBoost example

Best r	mse a	s a function of l	1:
	l1	rmse	
Θ	1	69572.517742	
1	10	73721.967141	
2	100	82312.312413	

Base learners in XGBoost

- Linear Base Learner:
 - Sum of linear terms
 - Boosted model is weighted sum of linear models (thus is 0 itself linear)
 - Rarely used 0
- Tree Base Learner:
 - Decision tree 0
 - Boosted model is weighted sum of decision trees 0 (nonlinear)
 - Almost exclusively used in XGBoost 0

Creating DataFrames from multiple equal-length lists

pd.DataFrame(list(zip(list1,list2)),columns=

- ["list1","list2"]))
- zip creates a generator of parallel values:
 - zip([1,2,3],["a","b""c"]) = [1,"a"],[2,"b"],[3,"c"] 0
 - generators need to be completely instantiated before 0 they can be used in DataFrame objects
- list() instantiates the full generator and passing that into the DataFrame converts the whole expression

Let's practice!

