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Regression basics
Outcome is real-valued
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Common regression metrics
Root mean squared error (RMSE)

Mean absolute error (MAE)



EXTREME GRADIENT BOOSTING WITH XGBOOST

Computing RMSE
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Computing RMSE
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Computing RMSE
Actual Predicted Error Squared Error

10 20 -10 100

3 8 -5 25

6 1 5 25

Total Squared Error: 150

Mean Squared Error: 50

Root Mean Squared Error: 7.07
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Computing MAE
Actual Predicted Error

10 20 -10

3 8 -5

6 1 5

Total Absolute Error: 20

Mean Absolute Error: 6.67
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Common regression algorithms
Linear regression

Decision trees
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Algorithms for both regression and classification

 https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/
com.ibm.spss.modeler.help/nodes_treebuilding.htm
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Objective Functions and Why We Use Them
Quantifies how far off a prediction is from the actual result

Measures the difference between estimated and true values
for some collection of data

Goal: Find the model that yields the minimum value of the
loss function



EXTREME GRADIENT BOOSTING WITH XGBOOST

Common loss functions and XGBoost
Loss function names in xgboost:

reg:squarederror - use for regression problems

reg:logistic - use for classification problems when you want
just decision, not probability

binary:logistic - use when you want probability rather than
just decision
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Base learners and why we need them
XGBoost involves creating a meta-model that is composed of
many individual models that combine to give a final
prediction

Individual models = base learners

Want base learners that when combined create final
prediction that is non-linear

Each base learner should be good at distinguishing or
predicting different parts of the dataset

Two kinds of base learners: tree and linear
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Trees as base learners example: Scikit-learn API
import xgboost as xgb 
import pandas as pd 
import numpy as np 
from sklearn.model_selection import train_test_split 

boston_data = pd.read_csv("boston_housing.csv")  
X, y = boston_data.iloc[:,:-1],boston_data.iloc[:,-1] 

X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.2,  
                                                        random_state=123)  
xg_reg = xgb.XGBRegressor(objective='reg:squarederror', n_estimators=10, 
                                                  seed=123) 
xg_reg.fit(X_train, y_train) 

preds = xg_reg.predict(X_test) 
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Trees as base learners example: Scikit-learn API
rmse = np.sqrt(mean_squared_error(y_test,preds)) 
 
print("RMSE: %f" % (rmse)) 

RMSE: 129043.2314 
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Linear base learners example: learning API only
import xgboost as xgb
import pandas as pd 
import numpy as np 
from sklearn.model_selection import train_test_split 
 
boston_data = pd.read_csv("boston_housing.csv") 
 
X, y = boston_data.iloc[:,:-1],boston_data.iloc[:,-1] 
 
X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.2,  
                                                         random_state=123)  
DM_train = xgb.DMatrix(data=X_train,label=y_train) 
DM_test =  xgb.DMatrix(data=X_test,label=y_test)  
params = {"booster":"gblinear","objective":"reg:squarederror"}  
xg_reg = xgb.train(params = params, dtrain=DM_train, num_boost_round=10) 
 
preds = xg_reg.predict(DM_test) 
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Linear base learners example: learning API only
rmse = np.sqrt(mean_squared_error(y_test,preds)) 
 
print("RMSE: %f" % (rmse)) 

RMSE: 124326.24465 



Let's get to work!
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Regularization in XGBoost
Regularization is a control on model complexity

Want models that are both accurate and as simple as
possible

Regularization parameters in XGBoost:
gamma - minimum loss reduction allowed for a split to
occur

alpha - l1 regularization on leaf weights, larger values mean
more regularization

lambda - l2 regularization on leaf weights
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L1 regularization in XGBoost example
import xgboost as xgb 
import pandas as pd 
boston_data = pd.read_csv("boston_data.csv") 
X,y = boston_data.iloc[:,:-1],boston_data.iloc[:,-1]  
boston_dmatrix = xgb.DMatrix(data=X,label=y) 
params={"objective":"reg:squarederror","max_depth":4}  
l1_params = [1,10,100] 
rmses_l1=[]  
for reg in l1_params: 
    params["alpha"] = reg 
    cv_results = xgb.cv(dtrain=boston_dmatrix, params=params,nfold=4,  
                        num_boost_round=10,metrics="rmse",as_pandas=True,seed=123) 
    rmses_l1.append(cv_results["test-rmse-mean"].tail(1).values[0])  
print("Best rmse as a function of l1:") 
print(pd.DataFrame(list(zip(l1_params,rmses_l1)), columns=["l1","rmse"])) 

Best rmse as a function of l1: 
        l1          rmse 
    0    1  69572.517742 
    1   10  73721.967141 
    2  100  82312.312413 
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Base learners in XGBoost
Linear Base Learner:

Sum of linear terms

Boosted model is weighted sum of linear models (thus is
itself linear)

Rarely used

Tree Base Learner:
Decision tree

Boosted model is weighted sum of decision trees
(nonlinear)

Almost exclusively used in XGBoost
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Creating DataFrames from multiple equal-length lists
pd.DataFrame(list(zip(list1,list2)),columns=
["list1","list2"]))

zip  creates a generator  of parallel values:
zip([1,2,3],["a","b""c"])  = [1,"a"],[2,"b"],[3,"c"]

generators  need to be completely instantiated before
they can be used in DataFrame  objects

list()  instantiates the full generator and passing that into
the DataFrame  converts the whole expression
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