Regression review

EXTREME GRADIENT BOOSTING WITH XGBOOST

O

Sergey Fogelson

Head of Data Science, TelevisaUnivision

X datacamp



Regression basics

e Qutcome is real-valued

X datacamp EXTREME GRADIENT BOOSTING WITH XGBOOST



Common regression metrics

e Root mean squared error (RMSE)

e Mean absolute error (MAE)

EXTREME GRADIENT BOOSTING WITH XGBOOST



Computing RMSE

Actual Predicted

10 20
3 8
6 1

EXTREME GRADIENT BOOSTING WITH XGBOOST



Computing RMSE

Actual Predicted Error

10 20 -10
3 8 -0
6 1 O

EXTREME GRADIENT BOOSTING WITH XGBOOST



Computing RMSE

Actual Predicted Error Squared Error

10 20 -10 100
3 8 -0 25
6 1 O 25

e Total Squared Error: 150
e Mean Squared Error: 50
e Root Mean Squared Error: 7.07

EXTREME GRADIENT BOOSTING WITH XGBOOST



Computing MAE

Actual Predicted Error

10 20 -10
3 8 -0
6 1 O

e Total Absolute Error: 20
e Mean Absolute Error: 6.67

EXTREME GRADIENT BOOSTING WITH XGBOOST



Common regression algorithms

e Linear regression

e Decision trees

EXTREME GRADIENT BOOSTING WITH XGBOOST



Algorithms for both regression and classification

Road tested?
no . yes

) Mileage
DON'T BUY high o low
BUY
old - recent
DON'T BUY BUY

! https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/
com.ibm.spss.modeler.help/nodes_treebuilding.htm

EXTREME GRADIENT BOOSTING WITH XGBOOST



Let's practice!

EXTREME GRADIENT BOOSTING WITH XGBOOST



Obijective (loss)
functions and base
learners

EXTREME GRADIENT BOOSTING WITH XGBOOST

O

Sergey Fogelson

Head of Data Science, TelevisaUnivision

X datacamp



Objective Functions and Why We Use Them

e Quantifies how far off a prediction is from the actual result

e Measures the difference between estimated and true values
for some collection of data

e Goal: Find the model that yields the minimum value of the
loss function

EXTREME GRADIENT BOOSTING WITH XGBOOST



Common loss functions and XGBoost

e Loss function names in xgboost:
o reg:squarederror - use for regression problems

o reg:logistic - use for classification problems when you want
just decision, not probability

o binary:logistic - use when you want probability rather than
just decision

EXTREME GRADIENT BOOSTING WITH XGBOOST



Base learners and why we need them

e XGBoost involves creating a meta-model that is composed of
many individual models that combine to give a final
prediction

e |ndividual models = base learners

e Want base learners that when combined create final
prediction that is non-linear

e Each base learner should be good at distinguishing or
predicting different parts of the dataset

e Two kinds of base learners: tree and linear

EXTREME GRADIENT BOOSTING WITH XGBOOST



Trees as base learners example: Scikit-learn API

import xgbhoost as xgb

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

boston_data = pd.read_csv("boston_housing.csv")
X, y = boston_data.iloc[:,:-1],boston_data.iloc[:,-1]

X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.2,
random_state=123)
Xxg_reg = Xgb.XGBRegressor(objective='reg:squarederror', n_estimators=10,
seed=123)
xg_reg.fit(X_train, y_train)

preds = xg_reg.predict(X_test)

EXTREME GRADIENT BOOSTING WITH XGBOOST



Trees as base learners example: Scikit-learn API

rmse = np.sqrt(mean_squared_error(y_test,preds))

print("RMSE: %f" % (rmse))

RMSE: 129043.2314

EXTREME GRADIENT BOOSTING WITH XGBOOST



Linear base learners example: learning API only

import xgboost as xgb

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

boston_data = pd.read_csv("boston_housing.csv")

X, y = boston_data.iloc[:,:-1],boston_data.iloc[:,-1]

X_train, X_test, y_train, y_test= train_test_split(X, y, test_size=0.2,
random_state=123)

DM_train = xgb.DMatrix(data=X_train,label=y_train)
DM_test = xgb.DMatrix(data=X_test,label=y_test)

params = {"booster":"gblinear","objective":"reg:squarederror"}
Xxg_reg = xgb.train(params = params, dtrain=DM_train, num_boost_round=10)

preds = xg_reg.predict(DM_test)

EXTREME GRADIENT BOOSTING WITH XGBOOST



Linear base learners example: learning API only

rmse = np.sqrt(mean_squared_error(y_test,preds))

print("RMSE: %f" % (rmse))

RMSE: 124326.24465

EXTREME GRADIENT BOOSTING WITH XGBOOST



Let's get to work!

EXTREME GRADIENT BOOSTING WITH XGBOOST



Regularization and

base learners in
XGBoost

EXTREME GRADIENT BOOSTING WITH XGBOOST

O

Sergey Fogelson

Head of Data Science, TelevisaUnivision

X datacamp



Regularization in XGBoost

e Regularization is a control on model complexity

e Want models that are both accurate and as simple as
possible

e Regularization parameters in XGBoost:
o gamma - minimum loss reduction allowed for a split to

OCCuUr

o alpha - 1 regularization on leaf weights, larger values mean
more regularization

o |lambda - 12 regularization on leaf weights

EXTREME GRADIENT BOOSTING WITH XGBOOST



L1 regularization in XGBoost example

import xgboost as xgb
import pandas as pd
boston_data = pd.read_csv("boston_data.csv")
X,y = boston_data.iloc[:,:-1],boston_data.iloc[:,-1]
boston_dmatrix = xgb.DMatrix(data=X,label=y)
params={"objective":"reg:squarederror", "max_depth":4}
11_params = [1,10,100]
rmses_11=[]
for reg in 11_params:
params["alpha"] = reg
cv_results = xgb.cv(dtrain=boston_dmatrix, params=params,nfold=4,
num_boost_round=10,metrics="rmse",as_pandas=True,seed=123)
rmses_11.append(cv_results["test-rmse-mean"].tail(1).values[0])
print("Best rmse as a function of 11:")
print(pd.DataFrame(list(zip(11_params,rmses_11)), columns=["11","rmse"]))

Best rmse as a function of 11:

rmse
69572.517742
73721.967141
82312.312413

EXTREME GRADIENT BOOSTING WITH XGBOOST



Base learners in XGBoost

e Linear Base Learner:
o Sum of linear terms

o Boosted model is weighted sum of linear models (thus is
itself linear)

o Rarely used

e Tree Base Learner:
o Decision tree

o Boosted model is weighted sum of decision trees
(nonlinear)

o Almost exclusively used in XGBoost

EXTREME GRADIENT BOOSTING WITH XGBOOST



Creating DataFrames from multiple equal-length lists

pd.DataFrame(list(zip(listl,1ist2)),columns=
e ["listl","list2"]))

e zip creates a generator of parallel values:
o) Zip([1,2,3],["a","b""C"]) —_ [1,"8"],[2,"b"],[3,"0"]

o generators need to be completely instantiated before
they can be used in DataFrame objects

e list() instantiates the full generator and passing that into
the DataFrame converts the whole expression

EXTREME GRADIENT BOOSTING WITH XGBOOST



Let's practice!

EXTREME GRADIENT BOOSTING WITH XGBOOST



