
Transfer learning for
text classification

DEEP LEARNING FOR TEXT WITH PYTORCH

Shubham Jain
Instructor

DEEP LEARNING FOR TEXT WITH PYTORCH

What is transfer learning?
 Use pre-existing knowledge from one task

to a related task

Saves time

Share expertise

Reduces need for large data

An English teacher starts teaching History

DEEP LEARNING FOR TEXT WITH PYTORCH

Mechanics of transfer learning

DEEP LEARNING FOR TEXT WITH PYTORCH

Mechanics of transfer learning

DEEP LEARNING FOR TEXT WITH PYTORCH

Mechanics of transfer learning

DEEP LEARNING FOR TEXT WITH PYTORCH

Mechanics of transfer learning

DEEP LEARNING FOR TEXT WITH PYTORCH

Pre-trained model : BERT
Bidirectional Encoder Representations from Transformers

Trained for language modeling

Multiple layers of transformers

Pre-trained on large texts

DEEP LEARNING FOR TEXT WITH PYTORCH

Hands-on: implementing BERT
texts = ["I love this!",
 "This is terrible.",
 "Amazing experience!",
 "Not my cup of tea."]
labels = [1, 0, 1, 0]
import torch
from transformers import BertTokenizer, BertForSequenceClassification
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased',
 num_labels=2)
inputs = tokenizer(texts, padding=True, truncation=True,
 return_tensors="pt", max_length=32)
inputs["labels"] = torch.tensor(labels)

DEEP LEARNING FOR TEXT WITH PYTORCH

Fine-tuning BERT
optimizer = torch.optim.AdamW(model.parameters(), lr=0.00001)
model.train()
for epoch in range(1):
 outputs = model(**inputs)
 loss = outputs.loss
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()
 print(f"Epoch: {epoch+1}, Loss: {loss.item()}")

Epoch: 1, Loss: 0.7061821222305298

DEEP LEARNING FOR TEXT WITH PYTORCH

Evaluating on new text
text = "I had an awesome day!"
input_eval = tokenizer(text, return_tensors="pt", truncation=True,
 padding=True, max_length=128)
outputs_eval = model(**input_eval)
predictions = torch.nn.functional.softmax(outputs_eval.logits, dim=-1)
predicted_label = 'positive' if torch.argmax(predictions) > 0 else 'negative'
print(f"Text: {text}\nSentiment: {predicted_label}")

Text: I had an awesome day!
Sentiment: positive

Let's practice!
DEEP LEARNING FOR TEXT WITH PYTORCH

Transformers for text
processing

DEEP LEARNING FOR TEXT WITH PYTORCH

Shubham Jain
Instructor

DEEP LEARNING FOR TEXT WITH PYTORCH

Why use transformers for text processing?

Speed

Understand the relationship between words, regardless of distances

Human-like response

DEEP LEARNING FOR TEXT WITH PYTORCH

Components of a transformer
Encoder: Processes input data

Decoder: Reconstructs the output

Feed-forward Neural Networks: Refine understanding

Positional Encoding: Ensure order matters

Multi-Head Attention: Captures multiple inputs or sentiments

DEEP LEARNING FOR TEXT WITH PYTORCH

Preparing our data: train-test split
sentences = ["I love this product", "This is terrible",
 "Could be better", "This is the best"]
labels = [1, 0, 0, 1]
train_sentences = sentences[:3]
train_labels = labels[:3]
test_sentences = sentences[3:]
test_labels = labels[3:]

DEEP LEARNING FOR TEXT WITH PYTORCH

Building the transformer model
class TransformerEncoder(nn.Module):
 def __init__(self, embed_size, heads, num_layers, dropout):
 super(TransformerEncoder, self).__init__()
 self.encoder = nn.TransformerEncoder(
 nn.TransformerEncoderLayer(d_model=embed_size, nhead=heads),
 num_layers=num_layers)
 self.fc = nn.Linear(embed_size, 2)
 def forward(self, x):
 x = self.encoder(x)
 x = x.mean(dim=1)
 return self.fc(x)
model = TransformerEncoder(embed_size=512, heads=8, num_layers=3, dropout=0.5)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()

DEEP LEARNING FOR TEXT WITH PYTORCH

Training the transformers
for epoch in range(5):
 for sentence, label in zip(train_sentences, train_labels):
 tokens = sentence.split()
 data = torch.stack([token_embeddings[token] for token in tokens], dim=1)
 output = model(data)
 loss = criterion(output, torch.tensor([label]))
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
 print(f"Epoch {epoch}, Loss: {loss.item()}")

Epoch 0, Loss: 13.788233757019043
Epoch 1, Loss: 3.9480819702148438
Epoch 2, Loss: 2.4790847301483154
Epoch 3, Loss: 1.3020926713943481
Epoch 4, Loss: 0.4660853147506714

DEEP LEARNING FOR TEXT WITH PYTORCH

Predicting the transformers
def predict(sentence):
 model.eval()
 with torch.no_grad():
 tokens = sentence.split()
 data = torch.stack([token_embeddings.get(token, torch.rand((1, 512)))
 for token in tokens], dim=1)
 output = model(data)
 predicted = torch.argmax(output, dim=1)
 return "Positive" if predicted.item() == 1 else "Negative"

DEEP LEARNING FOR TEXT WITH PYTORCH

Predicting on new text
sample_sentence = "This product can be better"
print(f"'{sample_sentence}' is {predict(sample_sentence)}")

'This product can be better' is Negative

Let's practice!
DEEP LEARNING FOR TEXT WITH PYTORCH

Attention
mechanisms for text

generation
DEEP LEARNING FOR TEXT WITH PYTORCH

Shubham Jain
Instructor

DEEP LEARNING FOR TEXT WITH PYTORCH

The ambiguity in text processing
"The monkey ate that banana because it was too hungry"

What does the word "it" refer to?

DEEP LEARNING FOR TEXT WITH PYTORCH

Attention mechanisms
Assigns importance to words

Ensures that machine's interpretation aligns
with human understanding

 Xie, Huiqiang & Qin, Zhijin & Li, Geoffrey & Juang, Biing-Hwang. (2020). Deep Learning Enabled Semantic
Communication Systems
1

DEEP LEARNING FOR TEXT WITH PYTORCH

Self and multi-head attention
Self-Attention: assigns significance to words within a sentence

The cat, which was on the roof, was scared"

Linking "was scared" to "The cat"

Multi-Head Attention: like having multiple spotlights, capturing different facets
Understanding "was scared" can relate to

"The cat", "the roof", or "was on"

DEEP LEARNING FOR TEXT WITH PYTORCH

Attention mechanism - setting vocabulary and data
data = ["the cat sat on the mat", ...]
vocab = set(' '.join(data).split())
word_to_ix = {word: i for i, word in enumerate(vocab)}
ix_to_word = {i: word for word, i in word_to_ix.items()}
pairs = [sentence.split() for sentence in data]
input_data = [[word_to_ix[word] for word in sentence[:-1]] for sentence in pairs]
target_data = [word_to_ix[sentence[-1]] for sentence in pairs]
inputs = [torch.tensor(seq, dtype=torch.long) for seq in input_data]
targets = torch.tensor(target_data, dtype=torch.long)

DEEP LEARNING FOR TEXT WITH PYTORCH

Model definition
embedding_dim = 10
hidden_dim = 16

class RNNWithAttentionModel(nn.Module):
 def __init__(self):
 super(RNNWithAttentionModel, self).__init__()
 self.embeddings = nn.Embedding(vocab_size, embedding_dim)
 self.rnn = nn.RNN(embedding_dim, hidden_dim, batch_first=True)
 self.attention = nn.Linear(hidden_dim, 1)
 self.fc = nn.Linear(hidden_dim, vocab_size)

DEEP LEARNING FOR TEXT WITH PYTORCH

Forward propagation with attention
def forward(self, x):
 x = self.embeddings(x)
 out, _ = self.rnn(x)
 attn_weights = torch.nn.functional.softmax(self.attention(out).squeeze(2),
 dim=1)
 context = torch.sum(attn_weights.unsqueeze(2) * out, dim=1)
 out = self.fc(context)
 return out
def pad_sequences(batch):
 max_len = max([len(seq) for seq in batch])
 return torch.stack([torch.cat([seq, torch.zeros(max_len-len(seq)).long()])
 for seq in batch])

DEEP LEARNING FOR TEXT WITH PYTORCH

Training preparation
criterion = nn.CrossEntropyLoss()
attention_model = RNNWithAttentionModel()
optimizer = torch.optim.Adam(attention_model.parameters(), lr=0.01)
for epoch in range(300):
 attention_model.train()
 optimizer.zero_grad()
 padded_inputs = pad_sequences(inputs)
 outputs = attention_model(padded_inputs)
 loss = criterion(outputs, targets)
 loss.backward()
 optimizer.step()

DEEP LEARNING FOR TEXT WITH PYTORCH

Model evaluation
for input_seq, target in zip(input_data, target_data):
 input_test = torch.tensor(input_seq, dtype=torch.long).unsqueeze(0)
 attention_model.eval()
 attention_output = attention_model(input_test)
 attention_prediction = ix_to_word[torch.argmax(attention_output).item()]
 print(f"\nInput: {' '.join([ix_to_word[ix] for ix in input_seq])}")
 print(f"Target: {ix_to_word[target]}")
 print(f"RNN with Attention prediction: {attention_prediction}")

Input: the cat sat on the
Target: mat
RNN with Attention prediction: mat

Let's practice!
DEEP LEARNING FOR TEXT WITH PYTORCH

Adversarial attacks
on text classification

models
DEEP LEARNING FOR TEXT WITH PYTORCH

Shubham Jain
Instructor

DEEP LEARNING FOR TEXT WITH PYTORCH

What are adversarial attacks?
Tweaks to input data

Not random but calculated malicious changes

Can drastically affect AI's decision-making

DEEP LEARNING FOR TEXT WITH PYTORCH

Importance of robustness
AI systems deciding if user comments are toxic or benign

AI unintentionally amplifying negative stereotypes from biased data

AI giving misleading information

DEEP LEARNING FOR TEXT WITH PYTORCH

Fast Gradient Sign Method (FGSM)
Exploits the model's learning information

Makes the tiniest possible change to deceive the model

DEEP LEARNING FOR TEXT WITH PYTORCH

Projected Gradient Descent (PGD)
More advanced than FGSM: it's iterative

Tries to find the most effective disturbance

DEEP LEARNING FOR TEXT WITH PYTORCH

The Carlini & Wagner (C&W) attack
Focuses on optimizing the loss function

Not just about deceiving but about being undetectable

DEEP LEARNING FOR TEXT WITH PYTORCH

Building defenses: strategies
Model Ensembling:

Use multiple models

Robust Data Augmentation:
Data augmentation

Adversarial Training:
Anticipate deception

DEEP LEARNING FOR TEXT WITH PYTORCH

Building defenses: tools & techniques
PyTorch's Robustness Toolbox:

Strengthen text models

Gradient Masking:
Add variety to training data to hide
exploitable patterns

Regularization Techniques:
Ensure model balance

 https://adversarial-robustness-toolbox.readthedocs.io/en/latest/,
https://stock.adobe.com/ie/contributor/209161356/designer-s-circle
1

Let's practice!
DEEP LEARNING FOR TEXT WITH PYTORCH

Wrap-up
DEEP LEARNING FOR TEXT WITH PYTORCH

Shubham Jain
Instructor

DEEP LEARNING FOR TEXT WITH PYTORCH

What you learned
Chapter 1: Foundations of Text Processing

Chapter 2: Text Classification Techniques

Chapter 3: Text Generation Methods and Pre-trained Models

Chapter 4: Advanced Deep Learning Topics

DEEP LEARNING FOR TEXT WITH PYTORCH

Key takeaways
Encoding Text: one-hot, BoW, TF-IDF

Deep Learning Models: CNN, RNN, GAN

Advanced Techniques: Transformers & Attention

Adversarial Attacks on Text Classification

DEEP LEARNING FOR TEXT WITH PYTORCH

Applied learning
Implemented text classification models

Built text generation models

Used pre-trained models for text tasks

Applied transfer learning

DEEP LEARNING FOR TEXT WITH PYTORCH

What's next?
On DataCamp:

Introduction to LLMs in Python

How to Train a LLM with PyTorch

Building a Transformer with PyTorch

Projects: text completion, chatbot text generation and sentiment analysis

https://app.datacamp.com/learn/courses/introduction-to-llms-in-python
https://www.datacamp.com/tutorial/how-to-train-a-llm-with-pytorch
https://www.datacamp.com/tutorial/building-a-transformer-with-py-torch

Congratulations and
Thank You!

DEEP LEARNING FOR TEXT WITH PYTORCH

