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What is transfer learning?
 Use pre-existing knowledge from one task

to a related task

 

Saves time

Share expertise

Reduces need for large data

 

An English teacher starts teaching History
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Pre-trained model : BERT
Bidirectional Encoder Representations from Transformers

Trained for language modeling

Multiple layers of transformers

Pre-trained on large texts
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Hands-on: implementing BERT
texts = ["I love this!",  
         "This is terrible.",  
         "Amazing experience!",  
         "Not my cup of tea."] 
labels = [1, 0, 1, 0]  
import torch 
from transformers import BertTokenizer, BertForSequenceClassification  
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') 
model = BertForSequenceClassification.from_pretrained('bert-base-uncased',             
                                                       num_labels=2) 
inputs = tokenizer(texts, padding=True, truncation=True,  
                    return_tensors="pt", max_length=32) 
inputs["labels"] = torch.tensor(labels) 
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Fine-tuning BERT
optimizer = torch.optim.AdamW(model.parameters(), lr=0.00001) 
model.train()  
for epoch in range(1): 
    outputs = model(**inputs)  
    loss = outputs.loss 
    loss.backward()  
    optimizer.step() 
    optimizer.zero_grad() 
    print(f"Epoch: {epoch+1}, Loss: {loss.item()}") 

Epoch: 1, Loss: 0.7061821222305298 
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Evaluating on new text
text = "I had an awesome day!" 
input_eval = tokenizer(text, return_tensors="pt", truncation=True,  
                       padding=True, max_length=128)  
outputs_eval = model(**input_eval)  
predictions = torch.nn.functional.softmax(outputs_eval.logits, dim=-1) 
predicted_label = 'positive' if torch.argmax(predictions) > 0 else 'negative' 
print(f"Text: {text}\nSentiment: {predicted_label}") 

Text: I had an awesome day! 
Sentiment: positive 
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Why use transformers for text processing?

Speed

Understand the relationship between words, regardless of distances

Human-like response
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Components of a transformer
Encoder: Processes input data

 

Decoder: Reconstructs the output

 

Feed-forward Neural Networks: Refine understanding

 

Positional Encoding: Ensure order matters

 

Multi-Head Attention: Captures multiple inputs or sentiments
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Preparing our data: train-test split
sentences = ["I love this product", "This is terrible",  
             "Could be better", "This is the best"] 
labels = [1, 0, 0, 1]  
train_sentences = sentences[:3] 
train_labels = labels[:3] 
test_sentences = sentences[3:] 
test_labels = labels[3:] 
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Building the transformer model
class TransformerEncoder(nn.Module):  
    def __init__(self, embed_size, heads, num_layers, dropout): 
        super(TransformerEncoder, self).__init__()  
        self.encoder = nn.TransformerEncoder( 
         nn.TransformerEncoderLayer(d_model=embed_size, nhead=heads), 
         num_layers=num_layers)  
        self.fc = nn.Linear(embed_size, 2)  
    def forward(self, x):  
        x = self.encoder(x)  
        x = x.mean(dim=1)  
        return self.fc(x)  
model = TransformerEncoder(embed_size=512, heads=8, num_layers=3, dropout=0.5)  
optimizer = optim.Adam(model.parameters(), lr=0.001) 
criterion = nn.CrossEntropyLoss() 



DEEP LEARNING FOR TEXT WITH PYTORCH

Training the transformers
for epoch in range(5):  
 for sentence, label in zip(train_sentences, train_labels): 
        tokens = sentence.split()  
        data = torch.stack([token_embeddings[token] for token in tokens], dim=1)  
        output = model(data)  
        loss = criterion(output, torch.tensor([label]))  
        optimizer.zero_grad() 
        loss.backward() 
        optimizer.step() 
        print(f"Epoch {epoch}, Loss: {loss.item()}") 

Epoch 0, Loss: 13.788233757019043 
Epoch 1, Loss: 3.9480819702148438 
Epoch 2, Loss: 2.4790847301483154 
Epoch 3, Loss: 1.3020926713943481 
Epoch 4, Loss: 0.4660853147506714 
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Predicting the transformers
def predict(sentence): 
    model.eval()  
    with torch.no_grad():  
        tokens = sentence.split() 
        data = torch.stack([token_embeddings.get(token, torch.rand((1, 512)))  
                            for token in tokens], dim=1)  
        output = model(data)  
        predicted = torch.argmax(output, dim=1)  
        return "Positive" if predicted.item() == 1 else "Negative" 
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Predicting on new text
sample_sentence = "This product can be better" 
print(f"'{sample_sentence}' is {predict(sample_sentence)}") 

'This product can be better' is Negative 
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The ambiguity in text processing
"The monkey ate that banana because it was too hungry"

What does the word "it" refer to?
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Attention mechanisms
Assigns importance to words

Ensures that machine's interpretation aligns
with human understanding

 Xie, Huiqiang & Qin, Zhijin & Li, Geoffrey & Juang, Biing-Hwang. (2020). Deep Learning Enabled Semantic
Communication Systems
1



DEEP LEARNING FOR TEXT WITH PYTORCH

Self and multi-head attention
Self-Attention: assigns significance to words within a sentence

The cat, which was on the roof, was scared"

Linking "was scared" to "The cat"

Multi-Head Attention: like having multiple spotlights, capturing different facets
Understanding "was scared" can relate to

"The cat", "the roof", or "was on"
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Attention mechanism - setting vocabulary and data
data = ["the cat sat on the mat", ...]  
vocab = set(' '.join(data).split()) 
word_to_ix = {word: i for i, word in enumerate(vocab)} 
ix_to_word = {i: word for word, i in word_to_ix.items()}  
pairs = [sentence.split() for sentence in data] 
input_data = [[word_to_ix[word] for word in sentence[:-1]] for sentence in pairs] 
target_data = [word_to_ix[sentence[-1]] for sentence in pairs] 
inputs = [torch.tensor(seq, dtype=torch.long) for seq in input_data] 
targets = torch.tensor(target_data, dtype=torch.long) 
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Model definition
embedding_dim = 10 
hidden_dim = 16  

class RNNWithAttentionModel(nn.Module): 
    def __init__(self): 
        super(RNNWithAttentionModel, self).__init__()  
        self.embeddings = nn.Embedding(vocab_size, embedding_dim) 
        self.rnn = nn.RNN(embedding_dim, hidden_dim, batch_first=True)  
        self.attention = nn.Linear(hidden_dim, 1)  
        self.fc = nn.Linear(hidden_dim, vocab_size) 
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Forward propagation with attention
def forward(self, x): 
    x = self.embeddings(x) 
    out, _ = self.rnn(x)  
    attn_weights = torch.nn.functional.softmax(self.attention(out).squeeze(2),  
                                               dim=1)  
    context = torch.sum(attn_weights.unsqueeze(2) * out, dim=1) 
    out = self.fc(context) 
    return out  
def pad_sequences(batch):  
    max_len = max([len(seq) for seq in batch]) 
    return torch.stack([torch.cat([seq, torch.zeros(max_len-len(seq)).long()])  
                        for seq in batch]) 
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Training preparation
criterion = nn.CrossEntropyLoss()  
attention_model = RNNWithAttentionModel() 
optimizer = torch.optim.Adam(attention_model.parameters(), lr=0.01)  
for epoch in range(300): 
    attention_model.train() 
    optimizer.zero_grad()  
    padded_inputs = pad_sequences(inputs) 
    outputs = attention_model(padded_inputs)  
    loss = criterion(outputs, targets) 
    loss.backward() 
    optimizer.step() 
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Model evaluation
for input_seq, target in zip(input_data, target_data): 
    input_test = torch.tensor(input_seq, dtype=torch.long).unsqueeze(0)  
    attention_model.eval() 
    attention_output = attention_model(input_test) 
    attention_prediction = ix_to_word[torch.argmax(attention_output).item()]  
    print(f"\nInput: {' '.join([ix_to_word[ix] for ix in input_seq])}") 
    print(f"Target: {ix_to_word[target]}") 
    print(f"RNN with Attention prediction: {attention_prediction}") 

Input: the cat sat on the 
Target: mat 
RNN with Attention prediction: mat 
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What are adversarial attacks?
Tweaks to input data

Not random but calculated malicious changes

Can drastically affect AI's decision-making
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Importance of robustness
AI systems deciding if user comments are toxic or benign

AI unintentionally amplifying negative stereotypes from biased data

AI giving misleading information
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Fast Gradient Sign Method (FGSM)
Exploits the model's learning information

Makes the tiniest possible change to deceive the model
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Projected Gradient Descent (PGD)
More advanced than FGSM: it's iterative

Tries to find the most effective disturbance
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The Carlini & Wagner (C&W) attack
Focuses on optimizing the loss function

Not just about deceiving but about being undetectable



DEEP LEARNING FOR TEXT WITH PYTORCH

Building defenses: strategies
Model Ensembling:

Use multiple models

 

Robust Data Augmentation:
Data augmentation

 

Adversarial Training:
Anticipate deception
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Building defenses: tools & techniques
PyTorch's Robustness Toolbox:

Strengthen text models

 

Gradient Masking:
Add variety to training data to hide
exploitable patterns

 

Regularization Techniques:
Ensure model balance

 https://adversarial-robustness-toolbox.readthedocs.io/en/latest/,
https://stock.adobe.com/ie/contributor/209161356/designer-s-circle
1
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What you learned
Chapter 1: Foundations of Text Processing

Chapter 2: Text Classification Techniques

Chapter 3: Text Generation Methods and Pre-trained Models

Chapter 4: Advanced Deep Learning Topics
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Key takeaways
Encoding Text: one-hot, BoW, TF-IDF

Deep Learning Models: CNN, RNN, GAN

Advanced Techniques: Transformers & Attention

Adversarial Attacks on Text Classification
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Applied learning
Implemented text classification models

Built text generation models

Used pre-trained models for text tasks

Applied transfer learning
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What's next?
On DataCamp:

Introduction to LLMs in Python

How to Train a LLM with PyTorch

Building a Transformer with PyTorch

Projects: text completion, chatbot text generation and sentiment analysis

https://app.datacamp.com/learn/courses/introduction-to-llms-in-python
https://www.datacamp.com/tutorial/how-to-train-a-llm-with-pytorch
https://www.datacamp.com/tutorial/building-a-transformer-with-py-torch


Congratulations and
Thank You!
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