
Overview of Text
Classification

DEEP LEARNING FOR TEXT WITH PYTORCH

Shubham Jain
Instructor

DEEP LEARNING FOR TEXT WITH PYTORCH

Text classification defined
Assigning labels to text

Giving meaning to words and sentences

Organizes and gives structure to
unstructured data

Applications:
Analyzing customer sentiment in reviews

Detecting spam in emails

Tagging news articles with relevant
topics

Types: binary, multi-class, multi-label

DEEP LEARNING FOR TEXT WITH PYTORCH

Binary classification
Sorting into two categories

Example: email spam detection

Emails can be classified as 'spam' or 'not
spam'

 https://storage.googleapis.com/gweb-cloudblog-publish/images/image4_v2LFcq0.max-1200×1200.png1

DEEP LEARNING FOR TEXT WITH PYTORCH

Multi-class classification
Sorting into multiple categories

Example: News articles can be sorted into
various categories like
1. Politics

2. Sports

3. Technology

DEEP LEARNING FOR TEXT WITH PYTORCH

Multi-label classification
Each text can be assigned multiple labels

Example: Books can be multiple genres
Action

Adventure

Fantasy

DEEP LEARNING FOR TEXT WITH PYTORCH

What are word embeddings
Previous encoding techniques are a good
first step

Often create too many features and
can't identify similar words

Word embeddings map words to numerical
vectors

Example of semantic relationship:
King and queen

Man and woman

DEEP LEARNING FOR TEXT WITH PYTORCH

Word to index mapping
Example:

"King" -> 1

"Queen" -> 2

Compact and computationally efficient

Follows tokenization in the pipeline

DEEP LEARNING FOR TEXT WITH PYTORCH

Word embeddings in PyTorch
torch.nn.Embedding :

Creates word vectors from indexes

Input: Indexes for ['The', 'cat', 'sat', 'on', 'the', 'mat']

Embedding for 'the': tensor([-0.4689, 0.3164, -0.2971, -0.1291, 0.4064])
Embedding for 'cat': tensor([-0.0978, -0.4764, 0.0476, 0.1044, -0.3976])
Embedding for 'sat': tensor([0.2731, 0.4431, 0.1275, 0.1434, -0.4721])

DEEP LEARNING FOR TEXT WITH PYTORCH

Using torch.nn.Embedding
import torch
from torch import nn
words = ["The", "cat", "sat", "on", "the", "mat"]
word_to_idx = {word: i for i, word in enumerate(words)}
inputs = torch.LongTensor([word_to_idx[w] for w in words])
embedding = nn.Embedding(num_embeddings=len(words), embedding_dim=10)
output = embedding(inputs)
print(output)

tensor([[1.0624, 0.6792, 0.0459, ... -1.0828, -0.4475, 0.4868],
 ...
 [1.5766, 0.0106, 0.1161, ...,, -0.0859, 1.3160, 1.3621])

DEEP LEARNING FOR TEXT WITH PYTORCH

Using embeddings in the pipeline
def preprocess_sentences(text):
 # Tokenization
 # Stemming
 ...
 # Word to index mapping
class TextDataset(Dataset):
 def __init__(self, encoded_sentences):
 self.data = encoded_sentences

 def __len__(self):
 return len(self.data)

 def __getitem__(self, index):
 return self.data[index]

def text_processing_pipeline(text):
 tokens = preprocess_sentences(text)
 dataset = TextDataset(tokens)
 dataloader = DataLoader(dataset, batch_size=2,
 shuffle=True)
 return dataloader, vectorizer

text = "Your sample text here."
dataloader, vectorizer = text_processing_pipeline(text)
embedding = nn.Embedding(num_embeddings=10,
 embedding_dim=50)

for batch in dataloader:
 output = embedding(batch)
 print(output)

Let's practice!
DEEP LEARNING FOR TEXT WITH PYTORCH

Convolutional neural
networks for text

classification
DEEP LEARNING FOR TEXT WITH PYTORCH

Shubham Jain
Instructor

DEEP LEARNING FOR TEXT WITH PYTORCH

CNNs for text classification
Classifying tweets as

Positive

Negative

Neutral

DEEP LEARNING FOR TEXT WITH PYTORCH

The convolution operation
Convolution operation

Sliding a filter (kernel) over the input
data

For each position of the filter, perform
element-wise calculations

For text: learns structure and meaning of
words

 Animation from Vincent Dumoulin, Francesco Visin1

DEEP LEARNING FOR TEXT WITH PYTORCH

Filter and stride in CNNs
Filter:

Small matrix that we slide over the input

Stride:
Number of positions the filter moves

 Animation from Vincent Dumoulin, Francesco Visin1

DEEP LEARNING FOR TEXT WITH PYTORCH

CNN architecture for text
Convolutional layer: applies filters to input data

Pooling layer: reduces data size while preserving important information

Fully connected layer: makes final predictions based on previous layer output

DEEP LEARNING FOR TEXT WITH PYTORCH

Implementing a text classification model using CNN
class SentimentAnalysisCNN(nn.Module):
 def __init__(self, vocab_size, embed_dim):
 super().__init__()
 self.embedding = nn.Embedding(vocab_size,
 embed_dim)
 self.conv = nn.Conv1d(embed_dim, embed_dim,
 kernel_size=3, stride=1,
 padding=1)
 self.fc = nn.Linear(embed_dim, 2)
 ...

__init__ method configures the
architecture

super() initializes the base class
nn.Module

nn.Embedding creates dense word vectors

nn.Conv1d for one dimensional data

DEEP LEARNING FOR TEXT WITH PYTORCH

Implementing a text classification model using CNN
 ...
 def forward(self, text):
 embedded = self.embedding(text).permute(0, 2, 1)
 conved = F.relu(self.conv(embedded))
 conved = conved.mean(dim=2)
 return self.fc(conved)

Embedding layer converts text to
embedding

Match tensors to convolution layer's
expected input

Extract important features with ReLU

Eliminate extra layers and dimensions

DEEP LEARNING FOR TEXT WITH PYTORCH

Preparing data for the sentiment analysis model
vocab = ["i", "love", "this", "book", "do", "not", "like"]
word_to_idx = {word: i for i, word in enumerate(vocab)}
vocab_size = len(word_to_ix)
embed_dim = 10
book_samples = [
 ("The story was captivating and kept me hooked until the end.".split(),1),
 ("I found the characters shallow and the plot predictable.".split(),0)
]
model = SentimentAnalysisCNN(vocab_size, embed_dim)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)

DEEP LEARNING FOR TEXT WITH PYTORCH

Training the model
for epoch in range(10):
 for sentence, label in data:
 model.zero_grad()
 sentence = torch.LongTensor([word_to_idx.get(w, 0) for w in sentence]).unsqueeze(0)
 outputs = model(sentence)
 label = torch.LongTensor([int(label)])
 loss = criterion(outputs, label)
 loss.backward()
 optimizer.step()

DEEP LEARNING FOR TEXT WITH PYTORCH

Running the Sentiment Analysis Model
for sample in book_samples:
 input_tensor = torch.tensor([word_to_idx[w] for w in sample], dtype=torch.long).unsqueeze(0)
 outputs = model(input_tensor)
 _, predicted_label = torch.max(outputs.data, 1)
 sentiment = "Positive" if predicted_label.item() == 1 else "Negative"
 print(f"Book Review: {' '.join(sample)}")
 print(f"Sentiment: {sentiment}\n")

Book Review: The story was captivating and kept me hooked until the end
Sentiment: Positive
Book Review: I found the characters shallow and the plot predictable
Sentiment: Negative

Let's practice!
DEEP LEARNING FOR TEXT WITH PYTORCH

Recurrent neural
networks for text

classification
DEEP LEARNING FOR TEXT WITH PYTORCH

Shubham Jain
Data Scientist

DEEP LEARNING FOR TEXT WITH PYTORCH

RNNs for text
Handle sequences of varying lengths

Maintain an internal short-term memory

CNNs spot patterns in chunks

RNNs remember past words for greater meaning

DEEP LEARNING FOR TEXT WITH PYTORCH

RNNs for text classification
Why?

RNNs can read sentences like humans, one
word at a time

Understand context and order

Example: Detecting sarcasm in a tweet

"I just love getting stuck in traffic."

Sarcastic

DEEP LEARNING FOR TEXT WITH PYTORCH

Recap: Implementing Dataset and DataLoader
Import libraries
from torch.utils.data import Dataset, DataLoader
Create a class
class TextDataset(Dataset):
 def __init__(self, text):
 self.text = text
 def __len__(self):
 return len(self.text)
 def __getitem__(self, idx):
 return self.text[idx]

DEEP LEARNING FOR TEXT WITH PYTORCH

RNN implementation
sample_tweet = "This movie had a great plot and amazing acting."
Preprocess the review and convert it to a tensor (not shown for brevity)
...
sentiment_prediction = model(sample_tweet_tensor)

Train an RNN model to classify tweet as positive or negative

Output: "Positive"

DEEP LEARNING FOR TEXT WITH PYTORCH

RNN variation: LSTM
Tweet:

 "Loved the cinematography,
 hated the dialogue.
 The acting was exceptional,
 but the plot fell flat."

Long Short Term Memory (LSTM) can
capture complexities where RNNs may
struggle

DEEP LEARNING FOR TEXT WITH PYTORCH

LSTM
LSTM architecture: Input gate, forget gate, and output gate

class LSTMModel(nn.Module):
 def __init__(self, input_size, hidden_size, output_size):
 super(LSTMModel, self).__init__()
 self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
 self.fc = nn.Linear(hidden_size, output_size)

 def forward(self, x):
 _, (hidden, _) = self.lstm(x)
 output = self.fc(hidden.squeeze(0))
 return output

DEEP LEARNING FOR TEXT WITH PYTORCH

RNN variation: GRU
Email subject:

 "Congratulations!
 You've won a free trip
 to Hawaii!"

Gated Recurrent Unit (GRU) can quickly
recognize spammy patterns without
needing the full context

DEEP LEARNING FOR TEXT WITH PYTORCH

GRU
class GRUModel(nn.Module):
 def __init__(self, input_size, hidden_size, output_size):
 super(GRUModel, self).__init__()
 self.gru = nn.GRU(input_size, hidden_size, batch_first=True)
 self.fc = nn.Linear(hidden_size, output_size)
 def forward(self, x):
 _, hidden = self.gru(x)
 output = self.fc(hidden.squeeze(0))
 return output

Let's practice!
DEEP LEARNING FOR TEXT WITH PYTORCH

Evaluation metrics
for text classification
DEEP LEARNING FOR TEXT WITH PYTORCH

Shubham Jain
Instructor

DEEP LEARNING FOR TEXT WITH PYTORCH

Why evaluation metrics matter
Spotlight on Book Reviews:

Imagine a model that assesses the sentiment of book reviews

The model claims a best-selling novel is poorly reviewed. Do we accept this?

Use evaluation metrics

DEEP LEARNING FOR TEXT WITH PYTORCH

Evaluation RNN Models
Initialize model, criterion, and optimizer
rnn_model = RNNModel(input_size, hidden_size, num_layers, num_classes)
...
Model training
for epoch in range(10):
 outputs = rnn_model(X_train)
 ...
 print(f'Epoch: {epoch+1}, Loss: {loss.item()}')

outputs = rnn_model(X_test)
_, predicted = torch.max(outputs, 1)

DEEP LEARNING FOR TEXT WITH PYTORCH

Accuracy
The ratio of correct predictions to the total predictions

from torchmetrics import Accuracy
actual = torch.tensor([0, 1, 1, 0, 1, 0])
predicted = torch.tensor([0, 0, 1, 0, 1, 1])
accuracy = Accuracy(task="binary", num_classes=2)
acc = accuracy(predicted, actual)
print(f"Accuracy: {acc}")

Accuracy: 0.6666666666666666

DEEP LEARNING FOR TEXT WITH PYTORCH

Beyond accuracy
10,000 reviews: 9,800 are positive

A model that always predicts positive: 98% accuracy
The model failed to classify negative reviews

Precision: confidence in labeling a review as negative

Recall: how well the model spots negative reviews

F1 Score: balance between precision and recall

DEEP LEARNING FOR TEXT WITH PYTORCH

Precision and Recall
Precision: correctly predicted positive observations / total predicted positives

Recall: correctly predicted positive observations / all observations in the positive class

from torchmetrics import Precision, Recall
precision = Precision(task="binary", num_classes=2)
recall = Recall(task="binary", num_classes=2)
prec = precision(predicted, actual)
rec = recall(predicted, actual)
print(f"Precision: {prec}")
print(f"Recall: {rec}")

Precision: 0.6666666666666666
Recall: 0.5

DEEP LEARNING FOR TEXT WITH PYTORCH

Precision and Recall
Precision: 0.6666666666666666
Recall: 0.5

Precision: 66.66% accurately predicted as positive

Recall: captured 50% of positives

DEEP LEARNING FOR TEXT WITH PYTORCH

F1 score
Harmonizes precision and recall

Better measure for imbalanced classes

from torchmetrics import F1Score
f1 = F1Score(task="binary", num_classes=2)
f1_score = f1(predicted, actual)
print(f"F1 Score: {f1_score}")

F1 Score: 0.5714285714285715

F1 Score of 1 = perfect precision and recall

F1 Score of 0 = worst performance

DEEP LEARNING FOR TEXT WITH PYTORCH

Considerations
Multiclass cores may be identical

Can indicate good model performance

Always consider the problem when interpreting results!

Let's practice!
DEEP LEARNING FOR TEXT WITH PYTORCH

