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Text classification defined
Assigning labels to text

Giving meaning to words and sentences

 

 

Organizes and gives structure to
unstructured data

Applications:
Analyzing customer sentiment in reviews

Detecting spam in emails

Tagging news articles with relevant
topics

Types: binary, multi-class, multi-label
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Binary classification
Sorting into two categories

Example: email spam detection

Emails can be classified as 'spam' or 'not
spam'

 https://storage.googleapis.com/gweb-cloudblog-publish/images/image4_v2LFcq0.max-1200×1200.png1
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Multi-class classification
Sorting into multiple categories

Example: News articles can be sorted into
various categories like
1. Politics

2. Sports

3. Technology
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Multi-label classification
Each text can be assigned multiple labels

Example: Books can be multiple genres
Action

Adventure

Fantasy
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What are word embeddings
Previous encoding techniques are a good
first step

Often create too many features and
can't identify similar words

Word embeddings map words to numerical
vectors

Example of semantic relationship:
King and queen

Man and woman
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Word to index mapping
Example:

"King" -> 1

"Queen" -> 2

Compact and computationally efficient

Follows tokenization in the pipeline
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Word embeddings in PyTorch
torch.nn.Embedding :

Creates word vectors from indexes

 

Input: Indexes for ['The', 'cat', 'sat', 'on', 'the', 'mat']

Embedding for 'the': tensor([-0.4689,  0.3164, -0.2971, -0.1291,  0.4064]) 
Embedding for 'cat': tensor([-0.0978, -0.4764,  0.0476,  0.1044, -0.3976]) 
Embedding for 'sat': tensor([ 0.2731,  0.4431,  0.1275,  0.1434, -0.4721]) 
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Using torch.nn.Embedding
import torch 
from torch import nn  
words = ["The", "cat", "sat", "on", "the", "mat"] 
word_to_idx = {word: i for i, word in enumerate(words)}  
inputs = torch.LongTensor([word_to_idx[w] for w in words])  
embedding = nn.Embedding(num_embeddings=len(words), embedding_dim=10)  
output = embedding(inputs)  
print(output) 

tensor([[ 1.0624,  0.6792,  0.0459,  ... -1.0828, -0.4475,  0.4868],
         ... 
         [1.5766,  0.0106,  0.1161,  ...,,  -0.0859, 1.3160,  1.3621]) 
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Using embeddings in the pipeline
def preprocess_sentences(text): 
  # Tokenization 
  # Stemming 
  ...  
  # Word to index mapping  
class TextDataset(Dataset): 
    def __init__(self, encoded_sentences): 
        self.data = encoded_sentences 
 
    def __len__(self): 
        return len(self.data) 
 
    def __getitem__(self, index): 
        return self.data[index] 

def text_processing_pipeline(text): 
    tokens = preprocess_sentences(text) 
    dataset = TextDataset(tokens) 
    dataloader = DataLoader(dataset, batch_size=2,  
                            shuffle=True) 
    return dataloader, vectorizer  
 
text = "Your sample text here." 
dataloader, vectorizer = text_processing_pipeline(text)  
embedding = nn.Embedding(num_embeddings=10, 
                         embedding_dim=50)  
 
for batch in dataloader: 
    output = embedding(batch) 
    print(output) 
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CNNs for text classification
Classifying tweets as

Positive

Negative

Neutral
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The convolution operation
Convolution operation

Sliding a filter (kernel) over the input
data

For each position of the filter, perform
element-wise calculations

 

For text: learns structure and meaning of
words

 Animation from Vincent Dumoulin, Francesco Visin1
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Filter and stride in CNNs
Filter:

Small matrix that we slide over the input

 

Stride:
Number of positions the filter moves

 Animation from Vincent Dumoulin, Francesco Visin1
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CNN architecture for text
Convolutional layer: applies filters to input data

Pooling layer: reduces data size while preserving important information

Fully connected layer: makes final predictions based on previous layer output
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Implementing a text classification model using CNN
class SentimentAnalysisCNN(nn.Module):  
    def __init__(self, vocab_size, embed_dim):  
        super().__init__()  
        self.embedding = nn.Embedding(vocab_size,  
                                         embed_dim)  
        self.conv = nn.Conv1d(embed_dim, embed_dim,  
                               kernel_size=3, stride=1,  
                               padding=1)  
        self.fc =  nn.Linear(embed_dim, 2) 
    ... 

__init__  method configures the
architecture

super()  initializes the base class 
nn.Module

nn.Embedding  creates dense word vectors

nn.Conv1d  for one dimensional data
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Implementing a text classification model using CNN
    ... 
    def forward(self, text): 
        embedded = self.embedding(text).permute(0, 2, 1)  
        conved = F.relu(self.conv(embedded))  
        conved = conved.mean(dim=2)  
        return self.fc(conved) 

Embedding layer converts text to
embedding

Match tensors to convolution layer's
expected input

Extract important features with ReLU

Eliminate extra layers and dimensions
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Preparing data for the sentiment analysis model
vocab = ["i", "love", "this", "book", "do", "not", "like"] 
word_to_idx = {word: i for i, word in enumerate(vocab)}  
vocab_size = len(word_to_ix)  
embed_dim = 10  
book_samples = [ 
    ("The story was captivating and kept me hooked until the end.".split(),1), 
    ("I found the characters shallow and the plot predictable.".split(),0) 
]  
model = SentimentAnalysisCNN(vocab_size, embed_dim) 
criterion = nn.CrossEntropyLoss() 
optimizer = optim.SGD(model.parameters(), lr=0.1) 
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Training the model
for epoch in range(10):   
    for sentence, label in data: 
        model.zero_grad()  
        sentence = torch.LongTensor([word_to_idx.get(w, 0) for w in sentence]).unsqueeze(0)  
        outputs = model(sentence) 
        label = torch.LongTensor([int(label)])  
        loss = criterion(outputs, label) 
        loss.backward()  
        optimizer.step() 
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Running the Sentiment Analysis Model
for sample in book_samples:  
    input_tensor = torch.tensor([word_to_idx[w] for w in sample], dtype=torch.long).unsqueeze(0)  
    outputs = model(input_tensor)  
    _, predicted_label = torch.max(outputs.data, 1)  
    sentiment = "Positive" if predicted_label.item() == 1 else "Negative" 
    print(f"Book Review: {' '.join(sample)}") 
    print(f"Sentiment: {sentiment}\n") 

Book Review: The story was captivating and kept me hooked until the end 
Sentiment: Positive 
Book Review: I found the characters shallow and the plot predictable 
Sentiment: Negative 
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RNNs for text
Handle sequences of varying lengths

Maintain an internal short-term memory

CNNs spot patterns in chunks

RNNs remember past words for greater meaning
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RNNs for text classification
Why?

RNNs can read sentences like humans, one
word at a time

Understand context and order

Example: Detecting sarcasm in a tweet

"I just love getting stuck in traffic."

Sarcastic
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Recap: Implementing Dataset and DataLoader
# Import libraries 
from torch.utils.data import Dataset, DataLoader  
# Create a class 
class TextDataset(Dataset):  
    def __init__(self, text): 
        self.text = text  
    def __len__(self): 
        return len(self.text)  
    def __getitem__(self, idx): 
        return self.text[idx] 
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RNN implementation
sample_tweet = "This movie had a great plot and amazing acting." 
# Preprocess the review and convert it to a tensor (not shown for brevity) 
# ... 
sentiment_prediction = model(sample_tweet_tensor) 

Train an RNN model to classify tweet as positive or negative

Output: "Positive"
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RNN variation: LSTM
Tweet:

  "Loved the cinematography,  
  hated the dialogue.  
  The acting was exceptional, 
  but the plot fell flat." 

Long Short Term Memory (LSTM) can
capture complexities where RNNs may
struggle
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LSTM
LSTM architecture: Input gate, forget gate, and output gate

class LSTMModel(nn.Module):  
    def __init__(self, input_size, hidden_size, output_size): 
        super(LSTMModel, self).__init__() 
        self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True) 
        self.fc = nn.Linear(hidden_size, output_size) 

 
    def forward(self, x): 
        _, (hidden, _) = self.lstm(x) 
        output = self.fc(hidden.squeeze(0)) 
        return output 
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RNN variation: GRU
Email subject:

   "Congratulations!
    You've won a free trip  
    to Hawaii!"

 

Gated Recurrent Unit (GRU) can quickly
recognize spammy patterns without
needing the full context
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GRU
class GRUModel(nn.Module): 
    def __init__(self, input_size, hidden_size, output_size): 
        super(GRUModel, self).__init__() 
        self.gru = nn.GRU(input_size, hidden_size, batch_first=True) 
        self.fc = nn.Linear(hidden_size, output_size)  
    def forward(self, x): 
        _, hidden = self.gru(x) 
        output = self.fc(hidden.squeeze(0)) 
        return output 
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Why evaluation metrics matter
Spotlight on Book Reviews:

Imagine a model that assesses the sentiment of book reviews

The model claims a best-selling novel is poorly reviewed. Do we accept this?

Use evaluation metrics
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Evaluation RNN Models
# Initialize model, criterion, and optimizer 
rnn_model = RNNModel(input_size, hidden_size, num_layers, num_classes) 
... 
# Model training 
for epoch in range(10):  
    outputs = rnn_model(X_train) 
    ... 
    print(f'Epoch: {epoch+1}, Loss: {loss.item()}') 

outputs = rnn_model(X_test)  
_, predicted = torch.max(outputs, 1) 
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Accuracy
The ratio of correct predictions to the total predictions

from torchmetrics import Accuracy  
actual = torch.tensor([0, 1, 1, 0, 1, 0]) 
predicted = torch.tensor([0, 0, 1, 0, 1, 1])  
accuracy = Accuracy(task="binary", num_classes=2)  
acc = accuracy(predicted, actual) 
print(f"Accuracy: {acc}") 

Accuracy: 0.6666666666666666 
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Beyond accuracy
10,000 reviews: 9,800 are positive

A model that always predicts positive: 98% accuracy
The model failed to classify negative reviews

 

Precision: confidence in labeling a review as negative

Recall: how well the model spots negative reviews

F1 Score: balance between precision and recall
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Precision and Recall
Precision: correctly predicted positive observations / total predicted positives

Recall: correctly predicted positive observations / all observations in the positive class

from torchmetrics import Precision, Recall  
precision = Precision(task="binary", num_classes=2) 
recall = Recall(task="binary", num_classes=2)  
prec = precision(predicted, actual) 
rec = recall(predicted, actual)  
print(f"Precision: {prec}") 
print(f"Recall: {rec}") 

Precision: 0.6666666666666666 
Recall: 0.5 
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Precision and Recall
Precision: 0.6666666666666666 
Recall: 0.5 

Precision: 66.66% accurately predicted as positive

Recall: captured 50% of positives
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F1 score
Harmonizes precision and recall

Better measure for imbalanced classes

from torchmetrics import F1Score 
f1 = F1Score(task="binary", num_classes=2) 
f1_score = f1(predicted, actual) 
print(f"F1 Score: {f1_score}") 

F1 Score: 0.5714285714285715 

F1 Score of 1 = perfect precision and recall

F1 Score of 0 = worst performance
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Considerations
Multiclass cores may be identical

Can indicate good model performance

Always consider the problem when interpreting results!
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