
Introduction to
preprocessing for

text
DEEP LEARNING FOR TEXT WITH PYTORCH

Shubham Jain
Data Scientist

DEEP LEARNING FOR TEXT WITH PYTORCH

What we will learn
Text classification

Text generation

Encoding

Deep learning models for text

Transformer architecture

Protecting models

Use cases:

Sentiment analysis

Text summarization

Machine translation

DEEP LEARNING FOR TEXT WITH PYTORCH

What you should know
Prerequisite course: Intermediate Deep Learning with PyTorch

Deep learning models with PyTorch

Training and evaluation loops

Convolutional neural networks (CNNs) and recurrent neural networks (RNNs)

https://app.datacamp.com/learn/courses/intermediate-deep-learning-with-pytorch

DEEP LEARNING FOR TEXT WITH PYTORCH

Text processing pipeline

DEEP LEARNING FOR TEXT WITH PYTORCH

Text processing pipeline

Clean and prepare text

DEEP LEARNING FOR TEXT WITH PYTORCH

PyTorch and NLTK

Natural language tooklit
Transform raw text to processed text

DEEP LEARNING FOR TEXT WITH PYTORCH

Preprocessing techniques
Tokenization

Stop word removal

Stemming

Rare word removal

DEEP LEARNING FOR TEXT WITH PYTORCH

Tokenization
Tokens or words are extracted from text

Tokenization using torchtext

from torchtext.data.utils import get_tokenizer
tokenizer = get_tokenizer("basic_english")
tokens = tokenizer("I am reading a book now. I love to read books!")
print(tokens)

["I", "am", "reading", "a", "book", "now", ".", "I", "love", "to", "read",
"books", "!"]

DEEP LEARNING FOR TEXT WITH PYTORCH

Stop word removal
Eliminate common words that do not contribute to the meaning

Stop words: "a", "the", "and", "or", and more

import nltk
nltk.download('stopwords')
from nltk.corpus import stopwords
stop_words = set(stopwords.words('english'))
tokens = ["I", "am", "reading", "a", "book", "now", ".", "I", "love", "to", "read",
"books", "!"]
filtered_tokens = [token for token in tokens if token.lower() not in stop_words]
print(filtered_tokens)

["reading", "book", ".", "love", "read", "books", "!"]

DEEP LEARNING FOR TEXT WITH PYTORCH

Stemming
Reducing words to their base form

For example: "running", "runs", "ran" becomes run

import nltk
from nltk.stem import PorterStemmer
stemmer = PorterStemmer()
filtered_tokens = ["reading", "book", ".", "love", "read", "books", "!"]
stemmed_tokens = [stemmer.stem(token) for token in filtered_tokens]
print(stemmed_tokens)

["read", "book", ".", "love", "read", "book", "!"]

DEEP LEARNING FOR TEXT WITH PYTORCH

Rare word removal
Removing infrequent words that don't add value

["read", "book", "read", "book"]

from nltk.probability import FreqDist
stemmed_tokens= ["read", "book", ".", "love", "read", "book", "!"]
freq_dist = FreqDist(stemmed_tokens)
threshold = 2
common_tokens = [token for token in stemmed_tokens if freq_dist[token] > threshold]
print(common_tokens)

DEEP LEARNING FOR TEXT WITH PYTORCH

Preprocessing techniques
Tokenization, stopword removal, stemming, and rare word removal

Reduce features

Cleaner, more representative datasets

More techniques exist

Let's practice!
DEEP LEARNING FOR TEXT WITH PYTORCH

Encoding text data
DEEP LEARNING FOR TEXT WITH PYTORCH

Shubham Jain
Data Scientist

DEEP LEARNING FOR TEXT WITH PYTORCH

Text encoding

Convert text into machine-readable
numbers

Enable analysis and modeling

DEEP LEARNING FOR TEXT WITH PYTORCH

Encoding techniques
One-hot encoding: transforms words into unique numerical representations

Bag-of-Words (BoW): captures word frequency, disregarding order

TF-IDF: balances uniqueness and importance

Embedding: converts words into vectors, capturing semantic meaning (Chapter 2)

DEEP LEARNING FOR TEXT WITH PYTORCH

One-hot encoding
Mapping each word to a distinct vector

Binary vector:
1 for the presence of a word

0 for the absence of a word

['cat', 'dog', 'rabbit']
'cat' [1, 0, 0]

'dog' [0, 1, 0]

'rabbit' [0, 0, 1]

DEEP LEARNING FOR TEXT WITH PYTORCH

One-hot encoding with PyTorch
import torch
vocab = ['cat', 'dog', 'rabbit']
vocab_size = len(vocab)
one_hot_vectors = torch.eye(vocab_size)
one_hot_dict = {word: one_hot_vectors[i] for i, word in enumerate(vocab)}
print(one_hot_dict)

{'cat': tensor([1., 0., 0.]),
 'dog': tensor([0., 1., 0.]),
 'rabbit': tensor([0., 0., 1.])}

DEEP LEARNING FOR TEXT WITH PYTORCH

Bag-of-words
Example: "The cat sat on the mat"

Bag-of-words:
{'the': 2, 'cat': 1, 'sat': 1, 'on': 1, 'mat': 1}

Treating each document as an unordered
collection of words

Focuses on frequency, not order

DEEP LEARNING FOR TEXT WITH PYTORCH

CountVectorizer
from sklearn.feature_extraction.text import CountVectorizer
vectorizer = CountVectorizer()
corpus = ['This is the first document.', 'This document is the second document.',
'And this is the third one.', 'Is this the first document?']
X = vectorizer.fit_transform(corpus)
print(X.toarray())
print(vectorizer.get_feature_names_out())

[[0 1 1 1 0 0 1 0 1]
 [0 2 0 1 0 1 1 0 1]
 [1 0 0 1 1 0 1 1 1]
 [0 1 1 1 0 0 1 0 1]]
 ['and' 'document' 'first' 'is' 'one' 'second' 'the' 'third' 'this']

DEEP LEARNING FOR TEXT WITH PYTORCH

TF-IDF
Term Frequency-Inverse Document Frequency

Scores the importance of words in a document

Rare words have a higher score

Common ones have a lower score

Emphasizes informative words

DEEP LEARNING FOR TEXT WITH PYTORCH

TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer()
corpus = ['This is the first document.','This document is the second document.',
'And this is the third one.','Is this the first document?']
X = vectorizer.fit_transform(corpus)
print(X.toarray())
print(vectorizer.get_feature_names_out())

[[0. 0. 0.68091856 0.51785612 0.51785612 0.]
 [0. 0. 0. 0.51785612 0.51785612 0.68091856]
 [0.85151335 0.42575668 0. 0.32274454 0.32274454 0.]
 [0. 0. 0.68091856 0.51785612 0.51785612 0.]]
['and' 'document' 'first' 'is' 'one' 'second']

DEEP LEARNING FOR TEXT WITH PYTORCH

TfidfVectorizer

DEEP LEARNING FOR TEXT WITH PYTORCH

Encoding techniques
Techniques: One-hot encoding, bag-of-words, and TF-IDF

Allows models to understand and process text

Choose one technique to avoid redudancy

More techniques exist

Let's practice!
DEEP LEARNING FOR TEXT WITH PYTORCH

Introduction to
building a text

processing pipeline
DEEP LEARNING FOR TEXT WITH PYTORCH

Shubham Jain
Data Scientist

DEEP LEARNING FOR TEXT WITH PYTORCH

Recap: preprocessing

Preprocessing:
Tokenization

Stopword removal

Stemming

Rare word removal

DEEP LEARNING FOR TEXT WITH PYTORCH

Text processing pipeline

Encoding:
One-hot encoding

Bag-of-words

TF-IDF

Embedding

DEEP LEARNING FOR TEXT WITH PYTORCH

Text processing pipeline

Dataset as a container for processed and encoded text

DataLoader: batching, shuffling and multiprocessing

DEEP LEARNING FOR TEXT WITH PYTORCH

Recap: implementing Dataset and DataLoader
Import libraries
from torch.utils.data import Dataset, DataLoader
Create a class
class TextDataset(Dataset):
 def __init__(self, text):
 self.text = text
 def __len__(self):
 return len(self.text)
 def __getitem__(self, idx):
 return self.text[idx]

DEEP LEARNING FOR TEXT WITH PYTORCH

Recap: integrating Dataset and DataLoader
dataset = TextDataset(encoded_text)
dataloader = DataLoader(dataset, batch_size=2, shuffle=True)

DEEP LEARNING FOR TEXT WITH PYTORCH

Using helper functions
def encode_sentences(sentences):
 vectorizer = CountVectorizer()
 X = vectorizer.fit_transform(sentences)
 encoded_sentences = X.toarray()
 return encoded_sentences, vectorizer

def extract_sentences(data):
 sentences = re.findall(r'[A-Z][^.!?]*[.!?]',
 data)
 return sentences

def preprocess_sentences(sentences):
 processed_sentences = []
 for sentence in sentences:
 sentence = sentence.lower()
 tokens = tokenizer(sentence)
 tokens = [token for token in tokens
 if token not in stop_words]
 tokens = [stemmer.stem(token)
 for token in tokens]
 freq_dist = FreqDist(tokens)
 threshold = 2
 tokens = [token for token in tokens if
 freq_dist[token] > threshold]
 processed_sentences.append(
 ' '.join(tokens))
 return processed_sentences

DEEP LEARNING FOR TEXT WITH PYTORCH

Constructing the text processing pipeline
def text_processing_pipeline(text):
 tokens = preprocess_sentences(text)
 encoded_sentences, vectorizer = encode_sentences(tokens)
 dataset = TextDataset(encoded_sentences)
 dataloader = DataLoader(dataset, batch_size=2, shuffle=True)
 return dataloader, vectorizer

DEEP LEARNING FOR TEXT WITH PYTORCH

Applying the text processing pipeline
text_data = "This is the first text data. And here is another one."
sentences = extract_sentences(text_data)
dataloaders, vectorizer = [text_processing_pipeline(text) for text in sentences]
print(next(iter(dataloader))[0, :10])

[[1, 1, 1, 1, 1], [0, 0, 0, 1, 1]]

DEEP LEARNING FOR TEXT WITH PYTORCH

Text processing pipeline: it's a wrap!

Let's practice!
DEEP LEARNING FOR TEXT WITH PYTORCH

