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What we will learn
Text classification

Text generation

Encoding

Deep learning models for text

Transformer architecture

Protecting models

Use cases:

Sentiment analysis

Text summarization

Machine translation
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What you should know
Prerequisite course: Intermediate Deep Learning with PyTorch

Deep learning models with PyTorch

Training and evaluation loops

Convolutional neural networks (CNNs) and recurrent neural networks (RNNs)

https://app.datacamp.com/learn/courses/intermediate-deep-learning-with-pytorch
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Clean and prepare text
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PyTorch and NLTK

Natural language tooklit
Transform raw text to processed text
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Preprocessing techniques
Tokenization

Stop word removal

Stemming

Rare word removal
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Tokenization
Tokens or words are extracted from text

Tokenization using torchtext

from torchtext.data.utils import get_tokenizer  
tokenizer = get_tokenizer("basic_english")  
tokens = tokenizer("I am reading a book now. I love to read books!") 
print(tokens) 

["I", "am", "reading", "a", "book", "now", ".", "I", "love", "to", "read",  
"books", "!"] 
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Stop word removal
Eliminate common words that do not contribute to the meaning

Stop words: "a", "the", "and", "or", and more

import nltk 
nltk.download('stopwords') 
from nltk.corpus import stopwords  
stop_words = set(stopwords.words('english'))  
tokens = ["I", "am", "reading", "a", "book", "now", ".", "I", "love", "to", "read", 
"books", "!"] 
filtered_tokens = [token for token in tokens if token.lower() not in stop_words]  
print(filtered_tokens) 

["reading", "book", ".", "love", "read", "books", "!"] 
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Stemming
Reducing words to their base form

For example: "running", "runs", "ran" becomes run

import nltk 
from nltk.stem import PorterStemmer  
stemmer = PorterStemmer() 
filtered_tokens = ["reading", "book", ".", "love", "read", "books", "!"]  
stemmed_tokens = [stemmer.stem(token) for token in filtered_tokens]  
print(stemmed_tokens) 

["read", "book", ".", "love", "read", "book", "!"] 
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Rare word removal
Removing infrequent words that don't add value

["read", "book", "read", "book"] 

from nltk.probability import FreqDist 
stemmed_tokens= ["read", "book", ".", "love", "read", "book", "!"]   
freq_dist = FreqDist(stemmed_tokens)  
threshold = 2  
common_tokens = [token for token in stemmed_tokens if freq_dist[token] > threshold] 
print(common_tokens) 
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Preprocessing techniques
Tokenization, stopword removal, stemming, and rare word removal

Reduce features

Cleaner, more representative datasets

More techniques exist
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Text encoding

Convert text into machine-readable
numbers

Enable analysis and modeling
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Encoding techniques
One-hot encoding: transforms words into unique numerical representations

Bag-of-Words (BoW): captures word frequency, disregarding order

TF-IDF: balances uniqueness and importance

Embedding: converts words into vectors, capturing semantic meaning (Chapter 2)
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One-hot encoding
Mapping each word to a distinct vector

Binary vector:
1 for the presence of a word

0 for the absence of a word

['cat', 'dog', 'rabbit']
'cat' [1, 0, 0]

'dog' [0, 1, 0]

'rabbit' [0, 0, 1]
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One-hot encoding with PyTorch
import torch 
vocab = ['cat', 'dog', 'rabbit']  
vocab_size = len(vocab)  
one_hot_vectors = torch.eye(vocab_size)  
one_hot_dict = {word: one_hot_vectors[i] for i, word in enumerate(vocab)}  
print(one_hot_dict) 

{'cat': tensor([1., 0., 0.]), 
  'dog': tensor([0., 1., 0.]), 
  'rabbit': tensor([0., 0., 1.])} 
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Bag-of-words
Example: "The cat sat on the mat"

Bag-of-words:
{'the': 2, 'cat': 1, 'sat': 1, 'on': 1, 'mat': 1}

Treating each document as an unordered
collection of words

Focuses on frequency, not order
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CountVectorizer
from sklearn.feature_extraction.text import CountVectorizer  
vectorizer = CountVectorizer()  
corpus = ['This is the first document.', 'This document is the second document.',  
'And this is the third one.', 'Is this the first document?']  
X = vectorizer.fit_transform(corpus)  
print(X.toarray())  
print(vectorizer.get_feature_names_out()) 

[[0 1 1 1 0 0 1 0 1] 
 [0 2 0 1 0 1 1 0 1] 
 [1 0 0 1 1 0 1 1 1] 
 [0 1 1 1 0 0 1 0 1]]  
 ['and' 'document' 'first' 'is' 'one' 'second' 'the' 'third' 'this']
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TF-IDF
Term Frequency-Inverse Document Frequency

Scores the importance of words in a document

Rare words have a higher score

Common ones have a lower score

Emphasizes informative words
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TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer 
vectorizer = TfidfVectorizer()  
corpus = ['This is the first document.','This document is the second document.', 
'And this is the third one.','Is this the first document?']  
X = vectorizer.fit_transform(corpus)  
print(X.toarray())  
print(vectorizer.get_feature_names_out()) 

[[0.         0.         0.68091856 0.51785612 0.51785612 0.        ]
 [0.         0.         0.          0.51785612 0.51785612 0.68091856] 
 [0.85151335 0.42575668 0.         0.32274454 0.32274454 0.        ]
 [0.         0.         0.68091856 0.51785612 0.51785612 0.        ]]  
['and' 'document' 'first' 'is' 'one' 'second'] 
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TfidfVectorizer
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Encoding techniques
Techniques: One-hot encoding, bag-of-words, and TF-IDF

Allows models to understand and process text

Choose one technique to avoid redudancy

More techniques exist
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Recap: preprocessing

Preprocessing:
Tokenization

Stopword removal

Stemming

Rare word removal
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Text processing pipeline

Encoding:
One-hot encoding

Bag-of-words

TF-IDF

Embedding
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Text processing pipeline

Dataset as a container for processed and encoded text

DataLoader: batching, shuffling and multiprocessing
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Recap: implementing Dataset and DataLoader
# Import libraries 
from torch.utils.data import Dataset, DataLoader  
# Create a class 
class TextDataset(Dataset):  
    def __init__(self, text): 
        self.text = text  
    def __len__(self): 
        return len(self.text)  
    def __getitem__(self, idx): 
        return self.text[idx] 
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Recap: integrating Dataset and DataLoader
dataset = TextDataset(encoded_text) 
dataloader = DataLoader(dataset, batch_size=2, shuffle=True) 
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Using helper functions
def encode_sentences(sentences): 
    vectorizer = CountVectorizer() 
    X = vectorizer.fit_transform(sentences) 
    encoded_sentences = X.toarray() 
    return encoded_sentences, vectorizer 

def extract_sentences(data): 
    sentences = re.findall(r'[A-Z][^.!?]*[.!?]',  
                           data) 
    return sentences 

def preprocess_sentences(sentences):
    processed_sentences = [] 
    for sentence in sentences: 
        sentence = sentence.lower() 
        tokens = tokenizer(sentence) 
        tokens = [token for token in tokens  
                  if token not in stop_words] 
        tokens = [stemmer.stem(token)  
                  for token in tokens] 
        freq_dist = FreqDist(tokens) 
        threshold = 2 
        tokens = [token for token in tokens if  
        freq_dist[token] > threshold] 
        processed_sentences.append( 
                   ' '.join(tokens)) 
    return processed_sentences 
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Constructing the text processing pipeline
def text_processing_pipeline(text):  
    tokens = preprocess_sentences(text)  
    encoded_sentences, vectorizer = encode_sentences(tokens) 
    dataset = TextDataset(encoded_sentences)  
    dataloader = DataLoader(dataset, batch_size=2, shuffle=True)  
    return dataloader, vectorizer 
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Applying the text processing pipeline
text_data = "This is the first text data. And here is another one."  
sentences = extract_sentences(text_data) 
dataloaders, vectorizer = [text_processing_pipeline(text) for text in sentences] 
print(next(iter(dataloader))[0, :10]) 

[[1, 1, 1, 1, 1], [0, 0, 0, 1, 1]] 
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Text processing pipeline: it's a wrap!
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