Basics of k-means clustering

CLUSTER ANALYSIS IN PYTHON

Shaumik Daityari Business Analyst

Why k-means clustering?

- A critical drawback of hierarchical clustering: runtime
- K means runs significantly faster on large datasets

Step 1: Generate cluster centers

kmeans(obs, k_or_guess, iter, thresh, check_finite)

- obs: standardized observations
- k_or_guess : number of clusters
- iter : number of iterations (default: 20)
- thres : threshold (default: 1e-05)
- check_finite : whether to check if observations contain only finite numbers (default: True)

Returns two objects: cluster centers, distortion

How is distortion calculated?

tacamp

Step 2: Generate cluster labels

vq(obs, code_book, check_finite=True)

- obs : standardized observations
- code_book : cluster centers
- check_finite : whether to check if observations contain only finite numbers (default: True)

Returns two objects: a list of cluster labels, a list of distortions

A note on distortions

- kmeans returns a single value of distortions \bullet
- vq returns a list of distortions.

Running k-means

Import kmeans and vq functions **from** scipy.cluster.vq **import** kmeans, vq

Generate cluster centers and labels cluster_centers, _ = kmeans(df[['scaled_x', 'scaled_y']], 3) df['cluster_labels'], _ = vq(df[['scaled_x', 'scaled_y']], cluster_centers)

Plot clusters sns.scatterplot(x='scaled_x', y='scaled_y', hue='cluster_labels', data=df) plt.show()

R datacamp

Next up: exercises!

How many clusters? CLUSTER ANALYSIS IN PYTHON

Shaumik Daityari Business Analyst

How to find the right k?

- No *absolute* method to find right number of clusters (k) in k-means clustering
- Elbow method

Distortions revisited

- Distortion: sum of squared distances of points from cluster centers
- Decreases with an increasing number of clusters
- Becomes zero when the number of clusters equals the number of points
- Elbow plot: line plot between cluster centers and distortion

CLUSTER ANALYSIS IN PYTHON

Distortion = Sum of squares of distances of points from cluster centers

Elbow method

- Elbow plot: plot of the number of clusters and distortion \bullet
- Elbow plot helps indicate number of clusters present in data

Elbow method in Python

```
# Declaring variables for use
distortions = []
```

```
num_clusters = range(2, 7)
```

```
# Populating distortions for various clusters
for i in num_clusters:
    centroids, distortion = kmeans(df[['scaled_x', 'scaled_y']], i)
    distortions.append(distortion)
```

```
# Plotting elbow plot data
elbow_plot_data = pd.DataFrame({'num_clusters': num_clusters,
                                'distortions': distortions})
sns.lineplot(x='num_clusters', y='distortions',
             data = elbow_plot_data)
```

plt.show()

R datacamp

Final thoughts on using the elbow method

- Only gives an indication of optimal k (numbers of clusters) \bullet
- Does not always pinpoint how many k (numbers of clusters)
- Other methods: average silhouette and gap statistic

Next up: exercises

Limitations of kmeans clustering

CLUSTER ANALYSIS IN PYTHON

Shaumik Daityari Business Analyst

Limitations of k-means clustering

- How to find the right _K_ (number of clusters)?
- Impact of seeds
- Biased towards equal sized clusters

Impact of seeds

Initialize a random seed

from numpy import random random.seed(12)

Seed: np.array(1000, 2000)

Cluster sizes: 29, 29, 43, 47, 52

Seed: np.array(1,2,3)

Cluster sizes: 26, 31, 40, 50, 53

Impact of seeds: plots

Seed: np.array(1000, 2000)

Seed: np.array(1,2,3)

acamp

Uniform clusters in k means

latacamp

Uniform clusters in k-means: a comparison

K-means clustering with 3 clusters

Hierarchical clustering with 3 clusters

Final thoughts

- Each technique has its pros and cons
- Consider your data size and patterns before deciding on algorithm
- Clustering is exploratory phase of analysis

Next up: exercises

